
March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence
Vol. 00, No. 00, 200x, 1–28

RESEARCH ARTICLE

Studying Lagrangian dynamics of turbulence using on-demand

fluid particle tracking in a public turbulence database

Huidan Yua,†, Kalin Kanovb, Eric Perlmanb, Jason Grahama, Edo Frederixa,+, Randal

Burnsb, Alexander Szalayc, Gregory Eyinkd and Charles Meneveaua∗

aDepartment of Mechanical Engineering; bDepartment of Computer Science; cDepartment

of Physics and Astronomy; dDepartment of Applied Mathematics and Statistics, The

Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA;
†present address: Mechanical Engineering, Indiana University-Purdue University

Indianapolis;

(v3.2 released February 2009)

A recently developed JHU public turbulence database [1, 2] provides new ways to access large
datasets generated from high-performance computer simulations of turbulent flows to perform
numerical experiments. The database archives 10244 (spatial & time) data points obtained
from a pseudo-spectral direct numerical simulation (DNS) of forced isotropic turbulence. The
flow’s Taylor-scale Reynolds number is Reλ = 443, and the simulation output spans about
one large-scale eddy turnover time. Besides the stored velocity and pressure fields, built-in
1st- and 2nd-order space differentiation as well as spatial and temporal interpolations are
implemented on the database. The resulting 27 terabytes (TB) of data are public and can
be accessed remotely through an interface based on a modern Web-services model. Users
may write and execute analysis programs on their host computers, while the programs make
subroutine-like calls (getFunctions) requesting desired variables (velocity and pressure and
their gradients) over the network. The architecture of the database and the initial built-
in functionalities are described in a previous JoT paper [2]. In the present paper, further
developments of the database system are described; mainly the newly developed getPosition
function. Given an initial position, integration time-step, as well as an initial and end time,
the getPosition function tracks arrays of fluid particles and returns particle locations at the
end of the trajectory integration time. The getPosition function is tested by comparing with
trajectories computed outside of the database. It is then applied to study Lagrangian velocity
structure functions as well as tensor-based Lagrangian time correlation functions. The roles
of pressure Hessian and viscous terms in the evolution of the symmetric and antisymmetric
parts of the velocity gradient tensor are explored by comparing the time correlations with and
without these terms. Besides the getPosition function, several other updates to the database
are described such as a function to access the forcing term in the DNS, a new more efficient
interpolation algorithm based on partial sums, and a new Matlab interface.

Keywords: Forced isotropic turbulence; Lagrangian time correlation; Particle tracking;
Turbulence database; Web services.

1. Introduction

Due to advances in computer hardware and algorithms, turbulence simulations
supported by high performance computing infrastructures have continued to ex-
pand. Direct Numerical Simulations (DNS) of turbulent flows using on the order
of 10003 − 40003 grid points have been reported [3–6]. In the turbulence research

∗Corresponding author. Email: meneveau@jhu.edu, +permanent address: Mechanical Engineering, Eind-
hoven University of Technology, The Netherlands

ISSN: 1468-5248 (online only)
c© 200x Taylor & Francis
DOI: 10.1080/14685240YYxxxxxxx
http://www.informaworld.com

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

2 Huidan Yu, et al – PREPRINT

community, the prevailing approach is that individual researchers perform large
simulations that are analyzed during the runs and only a small subset of time-steps
are stored for subsequent, and by necessity more “static”, analysis. A number of
representative snapshots are stored while the majority of the time evolution has
to be discarded. As a result, much of the computational effort is not utilized as
effectively as it could. In fact, often large simulations of the same process must
be repeated after new questions arise that were not initially obvious. Storing the
entire space-time history of a simulation, however, generates datasets that are very
large and very difficult to access using prevailing approaches. Thus, the increasingly
larger, top-ranked simulations run the risk of becoming less and less accessible to
the wider turbulence scientific community.

As a step to develop new effective ways to translate the massive amounts of com-
putational turbulence data into meaningful knowledge, a new “cyber fluid dynam-
ics” paradigm has been proposed, which combines high-fidelity DNS of turbulence
with modern database technology [2]. The newly created JHU public turbulence
database (http://turbulence.pha.jhu.edu) archives a 27 Terabytes (TB) dataset from
a direct numerical simulation (DNS) of forced isotropic turbulence consisting of
10244 (spatial and time) samples, spanning about one large-scale eddy turnover
time. The database stores velocity and pressure fields. The domain size is in a
[0, 2π]3 domain and the Taylor-microscale Reynolds number is Reλ ≃ 433. The
spatial resolution is dx = 2π/1024 and the Kolmogorov scale is ηK = 0.00287 so
that dx/ηK ∼ 2.1. The turbulence integral scale is L = 1.376, the velocity root-
mean-square value is u′ = 0.681 and the mean dissipation-rate is ǫ = 0.092, in the
units of the simulation. The Kolmogorov time scale is τK = 0.045. The stored time
steps are separated by a time-interval of 0.002 (the original DNS was performed
with a time-step of 2 × 10−4 using a very conservative CFL condition [2]).

One of the hallmarks of the database is a Web services interface that allows users
to access data in a user-friendly fashion while allowing maximum flexibility to exe-
cute desired analysis tasks. Remote users may write and execute analysis programs
on their own computers, while their programs make subroutine-like calls named get-
functions (e.g. getVelocityAndPressure, getVelocityGradient, getPressureLaplacian,
etc.) requesting desired variables such as velocity, pressure and their gradients,
over the network. First and second-order space differentiation as well as spatial
and temporal interpolations are implemented on the database as pre-defined func-
tions. Instead of being restricted to analysis on the fly during DNS, researchers
may write and execute more specialized analysis programs on their host computers
at any time.

The data and the initial built-in functionalities have already been described in
detail in a previous publication [2]. Due to the easy accessibility and flexibility, the
database has attracted researchers from all over the world since its inception and
its use has resulted in various publications [7–15]. Nevertheless, current functional-
ities focus on extracting data at single time-steps of the turbulent field, best suited
for Eulerian studies of turbulence. There is also considerable interest in Lagrangian
descriptions of turbulence. A Lagrangian description of turbulence has advantages
in studies of turbulent transport and mixing processes, as well as relating statistics
with dynamical descriptions following fluid particles. An extensive database of pre-
computed Lagrangian trajectories for a large number of fluid and inertial particles,
and turbulence quantities along the trajectories, has been in operation for several
years [16].

The study of turbulence from a Lagrangian viewpoint has a long history, with the
earliest works of Taylor [17] and Richardson [18] both pre-dating Kolmogorov [19].
It was recognized that transport issues are addressed naturally from the Lagrangian

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 3

viewpoint, which has since been successfully employed in the theoretical treatment
of turbulent mixing [20–24]. Lagrangian concepts are also useful when considering
entrainment processes at turbulent/laminar interfaces [25] and Lagrangian stochas-
tic models are widely used to model processes ranging from atmospheric pollution
transport to turbulent combustion [26]. Lagrangian dynamics of the velocity gradi-
ent tensor can be used to understand many fundamental and intrinsic properties of
small-scale motions in high-Reynolds turbulence [13]. Studying Lagrangian turbu-
lence requires following a large number of particle trajectories in order to capture
the overall space and time scales. In spite of significant progress in recent years
[23, 27, 28], experimental Lagrangian measurements remain challenging especially
for high Re turbulence. Extraction of Lagrangian data from DNS is conceptually
easy, but requires the full time evolution to have been stored, such as in the JHU
turbulence database, or to store the trajectories of a predefined set of particles
[16]. To track fluid particles with arbitrary initial locations, or even for backward
tracking over extended time periods, trajectories must be recomputed on demand.
However, using currently available tools in the JHU turbulence database, users
must send requests back and forth over the network for each integration time step
of the particle tracking. Improvements to this approach must follow the best prac-
tices of databases, such as “move the program to the data” [29].

As a new tool to facilitate Lagrangian analysis, we develop the getPosition func-
tion inside the database. It tracks arrays of particles moving with the flow and
returns particle locations at the end of the trajectory integration time. The rele-
vant algorithm and data management approach for the new getPosition function is
described in §2, and the implementation is tested by comparing trajectories com-
puted inside and outside the database. In Section 3, we study Lagrangian velocity
structure functions and compare the results from the JHU database at Rλ ∼ 430
to results from the literature at other Reynolds numbers. In Section 4, we study
Lagrangian time correlation functions of the symmetric and antisymmetric parts
of the velocity gradient tensor in which the impact of various terms in the cor-
responding dynamical evolution equation is quantified by systematically including
these terms separately. In Section 5, we use the data to examine important features
of a model for the pressure Hessian tensor and how its predictions compare with
the data. We summarize the results in Section 6 with a short discussion. Other
recent updates to the JHU database, such as the new getForce function, more effi-
cient algorithms for interpolation, as well as new Matlab interfaces, are presented
and documented in Appendices A, B and C, respectively.

2. The getPosition function: algorithm and data handling

Existing database built-in functionalities can retrieve velocity, pressure as well as
their derivatives at a specific location and time within the archived time history.
To study Lagrangian turbulence one needs to perform an integration operation
along fluid particle trajectories, e.g. using a Runge-Kutta method, which at present
requires data transfers between a user’s computer and the database at every small
time-step needed in the Lagrangian integration. A more user-friendly and efficient
approach would be for a user to let the database compute the fluid trajectories by
doing the computations in the database. In this section we describe the algorithm
used for such integration, as well as the way the computations are performed inside
the various database layers. The end result is a new getfunction called getPosition
that allows to track arrays of fluid particles simultaneously and returns final particle
locations at the end of the specified trajectory integration time. It supports both
forward and backward tracking of fluid particles.

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

4 Huidan Yu, et al – PREPRINT

2.1. Fluid particle tracking algorithm

The getPosition function uses second order accurate Runge-Kutta integration.
Given fluid particle locations Xp at a user specified start time (tST), the func-
tion returns the particle locations at a user specified end time (tET). The user also
specifies a particle integration time-step (∆t∗p). Forward tracking is accomplished
by specifying tET > tST , whereas backward tracking is accomplished by specifying
tET < tST . The sign of the time-step need not be specified to make the distinction
between forward and backward tracking since inside the tracking algorithm, it is
taken to be ∆tp = sign[tET − tST]|∆t∗p|.

Particle tracking is accomplished by integrating the following equation between
times tST and tET

dxp

dt
= u(xp, t), xp(tST) = Xp, (1)

where xp(t) and u(xp, t) denote the position of the fluid particle originating (at
initial time tST) from position Xp and the velocity field at the particle location,
respectively. To advance the particle positions between two successive time instants
tm and tm+1(= tm + ∆tp), the predictor step yields an estimate

x∗
p(tm) = xp(tm) + u(xp(tm), tm)∆tp. (2)

The corrector step then gives the particle position at tm+1 as

xp(tm+1) = xp(tm) + ∆tp
1

2

[

u(xp(tm), tm) + u(x∗
p(tm), tm+1)

]

. (3)

or

xp(tm+1) = xp(tm) +
1

2

[

x∗
p(tm) − xp(tm)

]

+
1

2
∆tpu(x∗

p(tm), tm+1). (4)

The integration proceeds until tm reaches the user-specified final time tET . The
last integration time-step is typically done using a smaller time-step so that the
integration ends exactly at the specified tET . GetPosition then returns xp(tET) for
all particles that were at initial locations Xp.

For this integration scheme, the time-stepping error is of order (∆tp)
3 over one

time step. In general, accurate spatial and time interpolations are crucial to obtain
the fluid velocities while tracking particles along their trajectories. Spatial interpo-
lation with various optional orders of accuracy can be specified by the user. Time
interpolation is done by default using PHCIP [2]. To call this function, a user needs
to provide the start time (tST), particle number, an array containing the positions
of each particle at tST , the integration time step ∆t∗p, and the end time (tET).
On output, an array containing the positions of each particle at end time tET is
returned. As a time-step for particle tracking, in what follows we use ∆tp = 0.0004
for tests and applications (i.e. there are five particle-tracking time-steps for each
database time-step), unless stated otherwise.

2.2. Data and particle movements across servers

Due to the movement of particles within different portions of the data volume, the
implementation of the getPosition function on the various database layers is less
straightforward than the existing functions. In general, the data sets are stored in

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 5

multiple data servers, e.g. the current 27TB DNS data are partitioned across six
data servers. For the existing functions, since only one specific time is touched, all
the operations associated with a particular point in space, including temporal and
spatial interpolation, differentiation, etc. can be executed within one of the data
servers that store the data. The upper level web server plays a role to break down
a user’s batch query into pieces corresponding to each of the database servers and
thus assigns each point query to a particular server, where the data retrieval and
computation happens. Each of the data servers perform the requested computation
for their portion of the entire batch. The retrieved variables are returned to the
web server, where they are assembled and sent back to the user.

For getPosition, due to the movement of the fluid particles, it is often the case
within the desired time integration period, that particles leave one data server
and enter another data server either after the prediction semi-step, Eq. (2) or the
full time step, Eq. (4). In our current implementation, in order to alleviate the
individual database servers from the burden of keeping track of each individual
particle and whether it is within the boundaries of each server, we reassign all of
the particles after each semi or full step.

Figure 1 shows the movement of data between the web server and the database
servers. During the first iteration of the algorithm the predictor step is evaluated.
The initial set of particle positions (xp(tm)) is distributed among the database
servers according to the spatial and temporal partitioning of the data. This step
requires the velocity for each particle at the initial positions (u(xp(tm), tm)). The
distribution of points across database servers ensures that the data are available
locally on each database server. Each set of predictor positions (x∗

p(tm)) is eval-
uated according to Eq. (2) in the computational module of each database server.
The predictor positions are then returned to the web server. Using the predictor
positions the web server reassigns the particles to the database servers, and the
corrector step is evaluated using Eq. (4). This step requires the retrieval of the
velocity for each particle at the predictor positions (u(x∗

p(tm), tm+1)) and the ini-
tial particle positions, both of which are provided by the web server. Positions
xp(tm+1) are again evaluated in the computational module of each database server
and returned to the web server. This process continues until the specified end time
tET is reached. The reassignment of particles before each step in the Runge-Kutta
integration ensures that the data requested for each particle position is guaranteed
to be found on the database server that is issuing the request and performing the
integration.

2.3. Accuracy tests and performance

The accuracy of particle tracking inside the database (using getPosition) is tested
by comparing the trajectories with those evaluated using particle tracking as coded
on a local host (called “local tracking”), which involves calls to the database at
each of the integration time-steps. The integration algorithm in both methods is
identical, as described above. It is found that both approaches return the same
trajectories, typically up to the 6th or 7th digit after the decimal point (essentially
machine accuracy and chaotic behavior). The agreement is illustrated below by
comparing getPosition and local coding for two fluid particles and tracking them
from the beginning to final time available in the database. Fig. 2 shows the coordi-
nates of two particles starting from x = 3.02, y = 3.57, z = 5.36 (empty symbols)
and x = 3.97, y = 4.96, z = 4.29 (solid symbols,) and moving along with the local
flow. The particles are tracked in the whole time domain until t ≈ 45τK . Solid lines
denote the integration done on a “local computer”, whereas symbols denote the

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

6 Huidan Yu, et al – PREPRINT

���������
���������

	�
��
�
������������

����������������
��
����������������
��

���

�
�
���� � � �

� ����

� �����

�������	�
 ���
��

���
� �
 �
�
���� � � �

� ����

����	��
 � �
� � ��� � � �������

�
�

� ����

� �������

�
�����������

�
���
�

� � � �� ��� � ��� �

� � � �
� � ��� � �����

���������
���������

	�
��
�
������������

����	��
 � �
� � ��� � � �������

�
�����������

�
���
�

� �� � ���� � ��� �

� �� �
� ���� � �����

Figure 1. Interaction and data movement between the web server and database server during the execution
of the getPosition function.

integration done using the getPosition function.

t/τK

x,
y,

z

0 10 20 30 40
2

3

4

5

6

(a)

x

1

2

3

4

y
3

4
5

6

z

3

4

5

6

(b)

Figure 2. (a) Time evolution of 2 arbitrary fluid particles in x,y,z directions using getPosition function
(symbols) and local coding (lines) using the same integral algorithm. Circles: x; triangles: y, squares: z.
Empty symbols: particle 1 starting from x = 3.02, y = 3.57, z = 5.36; solid symbols: particle 2 starting
from x = 3.97, y = 4.96, z = 4.29. Lines denote the integration done on a “local computer”, whereas
symbols denote the integration done using the getPosition function. (b) 3D view of 2 particle tracks
(symbols same as in part (a))

A noticeable feature of getPosition compared to the Eulerian-based getFunctions
is the time expense due to the needed small integration time-step and the need to
call the getVelocity function twice in each integration step, as described in Section 2
Eqs. 1-4. For large number of particles (e.g. over 100) and long integration time, the
resulting calls can be very time-consuming if the particles are selected randomly in
the entire domain. In practice, it is more efficient to collect particles from several
randomly selected sub-cubes, e.g. consisting of 163 or 323 DNS grid-points. This
is more efficient because it minimizes I/O of the data that are stored in atoms
of size 723 [2]. Overall, more sampling particles are typically needed to achieve
the same statistical convergence as compared to sampling randomly over the entire
domain, but the overall efficiency is still significantly improved with such “sub-cube
sampling”.

When comparing the speed of the GetPosition function with the speed of track-
ing the particles on a local computer, we remark that it is difficult to obtain fully

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 7

repeatable performance measures, since the performance depends greatly on typical
network speeds and system load, which can vary greatly over time. Nevertheless,
the relative trends as shown in Fig. 3 are typically observed. The figure compares
integration times when using GetPosition and particle tracking coded on a local
computer (“local coding”), respectively, using exactly the same algorithm. To per-
form the comparison, we select ten sub-cubes of size N (N gridpoints on a side)
at random locations, and track N3 particles starting at each of the grid-points in-
side each sub-cube. We test two integration time-steps ∆tp and total tracking time
tET − tST . The time required to finish the total integration is obtained for each of
the 10 sub-cubes, and the times are averaged over the 10 sub-cubes. Sub-cube sizes
between N = 2 and N = 49 were used, corresponding 8 to 117,649 particles being
tracked in each cube. In Fig. 3, getPosition clearly shows the speedup against the
local coding. For larger ∆tp and small tET − tST in plot (a), the speedup increases
suddenly as the particle number increases above ∼ 4, 000. For large particle num-
bers, the time expense to use getPosition function can be 3 times less than tracking
the particles on a local computer relying on data transfers at each intermediate
time. For the case of smaller ∆tp and longer tET − tST shown in plot (b), the exe-
cution time is observed to increase more gradually. The time required to finish the
integration time needed for GetPosition increases weakly even as the particle num-
ber increased significantly. This is because the sub-cube size (N) is always smaller
than the 723 data-atoms. Hence, I/O needs are taxed about the same regardless of
the value of N .

Number of Points

E
xc

ec
ut

io
n

T
im

e
(s

)

100 101 102 103 104 1051

2

3

4

5

6

7

8

9

10

(a) Number of Points

E
xc

ec
ut

io
nT

im
e

(s
)

101 102 103 104 10510

15

20

25

30

35

40

45

(b)

Figure 3. Performance comparison of getPosition (circles) vs. local coding (squares) of integration for
particle tracking with integration time-step ∆tp and time t = tET −tST . (a) ∆tp = 6.67×10−4, tET −tST =
6.0 × 10−3; (b)∆tp = 4.0 × 10−4, tET − tST = 2.0 × 10−2.

As mentioned before, the getPosition function may be used for backward track-
ing. An interesting test is to track particles forward in time, arrive at some final
position, and then follow this operation by backward tracking for the same amount
of time, in order to determine how far from the original position the fluid particle
has been displaced. In the absence of roundoff and discretization errors, one would
expect the initial and final positions to be the same independent of time. In the
presence of roundoff and discretization errors in a highly chaotic flow, one expects
exponential spreading of fluid particle displacements, with Lyapunov exponents
on the order of the appropriate inverse eddy turnover time-scales. Suppose a fluid
particle is located at Xp initially. It is first tracked forward from the initial time
tST = 0 until a time tET = t using getPosition (with an integration time-step

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

8 Huidan Yu, et al – PREPRINT

∆tp = 0.0004). The final positions are then used as initial positions for back-
ward tracking, setting tST = t and tET = 0 (with the same integration time-step
|∆tp| = 0.0004). We denote the return location as X′

p. Such tracking is performed
for a set of thousands of particles. For small t we track 10,000 particles, for in-
termediate t we use 6,000 particles, while for long times (t > 1.7), a set of 2,000
fluid particles is tracked. The difference of Xp and X′

p is quantified using the root-
mean-square position-difference (denoted as δxrms, δyrms and δzrms) of the three
components of the position-difference vector X′

p − Xp.
The results from such forward and backward tracking tests are shown in Fig. 4

where the three rms values are shown as function of the forward-backward integra-
tion time t. At small t, the errors observed in Fig. 4 are on the order of machine
accuracy 10−7 and can thus be considered to be round-off errors. At larger t, the
growth of rms displacement appears consistent with Lyapunov exponents appro-
priate for the different separation scales. At small t (at t < τK), we expect that the
errors will grow as ∼ exp(t/τK), where τK = 0.044 is the Kolmogorov time-scale
of the data. This translates into a relatively steep slope of log10(e)/0.044 ∼ 10.
Up to times t ≈ 1 the rms separation distance upon return remains smaller than
one grid-spacing dx ∼ 6 × 10−3. Once the separation distances grow to scales
pertaining to the inertial range, one expects Lyapunov exponents on the order of

ǫ1/3δx
−2/3
rms (where ǫ ≈ 0.093 is the mean dissipation rate of the data). For example,

for δxrms = 0.1, this corresponds to a slope of log10(e) × 0.0931/3 × 0.1−2/3 ∼ 0.9
in the log-linear plot. The range of slopes mentioned is quite consistent with the
trends observed in Fig. 4.

t
0 0.5 1 1.5 2

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

δxrms

δyrms

δzrms

Figure 4. Root mean square of the three coordinates of the position-difference vector arising from forward
and backward fluid particle tracking using the getPosition function, plotted as function of forward-backward
tracking time t.

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 9

3. Lagrangian velocity structure functions

In this section, the new getPosition function is used to evaluate Lagrangian struc-
ture functions. It is well known that velocity differences across two points separated
by a distance r are highly intermittent in the inertial range of scales for η ≪ r ≪ L
[30]. Much of the past evidence for intermittency has been obtained from Eule-
rian quantities, i.e. the moments of the spatial velocity increments. Among oth-
ers, anomalous scaling of velocity increment moments, and the evolving shapes of
their probability density functions (PDF) at different scales, are regarded as Eule-
rian hallmarks of intermittency [30]. Intermittency in temporal velocity statistics,
which for proper Galilean invariance properties should be evaluated in a Lagrangian
frame, moving with the fluid, has been studied in detail only more recently. This
is due to advances in experimental techniques [23, 27, 28] and in computer simula-
tions [31], as well as the availability of Lagrangian time-series of turbulence (such
as that from data described in [32]).

A quantity of central interest for Lagrangian studies of turbulence is the La-
grangian velocity structure function (LVSF). In analogy to the Eulerian velocity
structure function, the LVSF is defined as

Sp(τ) =< (δτv)p >=< [v(t + τ) − v(t)]p > (5)

where v denotes a single velocity component of a fluid particle. The time-lag is
taken along a fluid particle trajectory. There have been detailed assessments of the
scaling behavior, Sp(τ) =< (δτv)p >∼ τ ξ(p), with a focus on the scaling exponent
ξ(p) and its dependence on moment order p. Recently, Biferale et al [31] presented
a detailed comparison between state-of-the-art experimental and numerical data
of LVSF in turbulence. In their paper [31], the DNS data were obtained from a
statistically homogeneous and isotropic turbulent flow with Reλ = 178 and 284.
The experimental data were obtained at Reynolds number ranging from Reλ = 350
to Reλ = 815 in a swirling water flow between counter-rotating baffled disks. They
analyze intermittency at both short, τ ≈ τη, and intermediate τη < τ ≪ TL, time
lags.

Here we use the DNS data (Reλ = 443) in the JHU turbulence database to
compute the LVSFs. We use the getPosition function to track about 14, 000 fluid
particle trajectories. For the sake of efficiency when calling getPosition as men-
tioned above, we collect the particle trajectories starting from sub-cubes chosen
randomly from the entire domain, and then randomly select particles in each sub-
cube. The particle number varies with the sub-cube size, as indicated in Table 1.
The largest time lag is about 45τK , within the database’s available time range.

Sub-cube size Number of Sub-cubes Particles per sub-cube Total particles #
128 2 800 1600
64 20 400 8000
32 26 200 3200
16 15 100 1500

Table 1. Sub-cube sizes and particle numbers used for starting location of fluid particle tracking.

Figure 5 shows a compilation of normalized second-order LSVFs at different
Reynolds numbers, from three datasets from DNS and four datasets from experi-
mental measurements. The solid line is from the analysis of the data in the JHU
turbulence database, and symbols are reproduced from Fig. 1 in Ref. [31]. Solid
symbols are for two DNS results with relatively low Re numbers and empty sym-
bols are for experimental data. The second-order LVSF increases in a short time

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

10 Huidan Yu, et al – PREPRINT

τ/τK

S
2(

τ)
/(

ετ
)

10-2 10-1 100 101 1020

1

2

3

4

5

6

7

DNS, 443
DNS1, 178
DNS2, 284
EXP1, 350
EXP2, 690
EXP3, 815
EXP4, 690

Figure 5. Time evolution of normalized second-order Lagrangian velocity structure function (averaged
over the three components), i.e. S2(τ)/(ετ), at various Reynolds numbers in turbulence. The solid line is
computed from the data in the JHU turbulence database (Rλ = 443), solid symbols and empty symbols
reproduced from Fig. 1 in Ref. [31].

range (τ < τK), reaches a maximum at τ ≈ 5τK , and then decreases at large
times, (τ > 10τK). However, no extended plateau is observed in the intermediate
time range, indicating that the power law regime typical of the inertial range has
not yet been achieved. The trends are mostly consistent between low Re DNS and
high Re experiments, although near the peak, the present results overshoot the
experimental data by about 3%.

Based on the standard Kolmogorov scaling that assumes Sp(τ) ∝

vp
rmsRe

−p/2
λ (τ/τK)p/2 where the relations of ε ∝ v3

rms/L and TL/τK ∝ Reλ have
been used (see [31]), we plot the second- and fourth-order LVSF compensated using

Re
p/2
λ /vp

rms in Figs. 6. Again, the solid line is from the JHU turbulence database
and symbols are digitized from Fig. 3 in Ref. [31]. It is seen that the solid line
follows the trends of the other data sets quite well, with good collapse between the
various lines for different Reynolds numbers as indicated.

It is concluded that the getPosition function can be used quite effectively to
probe Lagrangian statistics in turbulence. There is good agreement with prior
data regarding temporal, Lagrangian structure functions.

4. Tensor-based Lagrangian time-correlations of strain and rotation rates

The dynamics of the velocity gradient tensor Aij is of significant interest [13] be-
cause it encodes rich information about turbulence through its nine components
(in three dimensions). The Lagrangian autocorrelation time-scales for the tensor
elements themselves [8, 9, 33] are of particular interest in the construction of mod-
els and for general physical understanding. The time evolution of A following fluid
particles can be obtained quite simply by taking the gradient of the NS equations.
For incompressible flow, the resulting equation reads

dAij

dt
= −AikAkj −

∂2p

∂xi∂xj
+ ν

∂2Aij

∂xk∂xk
(6)

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 11

τ/τK

R
e λS

2(
τ)

/v
’2 rm

s

10-2 10-1 100 101 10210-2

10-1

100

101

102

103

DNS, 443
DNS1, 178
DNS2, 284
EXP1, 350
EXP2, 690
EXP3, 815
EXP4, 690

(a)

τ/τK

R
e λ2 S

4(
τ)

/v
’4 rm

s

10-1 100 101 10210-1

100

101

102

103

104

105

106

107

DNS, 443
DNS1, 178
DNS2, 284
EXP1, 350
EXP2, 690
EXP3, 815
EXP4, 690

(b)

Figure 6. Log-log plots of the second- and forth-order LVSF compensated using Re
p/2

λ /vp
rms vs.

normalized time lag. (a). p = 2; (b). p = 4.The solid line is computed from JHU turbulence database
(Rλ = 443), solid symbols and empty symbols are obtained from Fig. 1 in Ref. [31].

where d/dt stands for Lagrangian material derivative and p is the pressure di-
vided by the density of the fluid. The first term on the right-hand side of Eq.
(6) denotes the nonlinear self-interaction of A, the second term is a tensor called
pressure Hessian Pij ≡ ∂2p/∂xi∂xj , and the third is the viscous term. The tensor
A contains 9 elements among which 8 components are independent noticing the
incompressibility condition. The elements by themselves (unlike e.g. S2 and Ω2),
are not directly coordinate system invariant. So rather than evaluating 9 separate
temporal autocorrelation functions for each tensor element, their characterization
should be done more compactly in a frame-invariant fashion. With this in mind,
as in Refs. [8, 9] we use the tensor-based Lagrangian time correlation function of
a second-rank tensor C defined as

ρC(τ) ≡
〈Cij(t0)Cij(t0 + τ)〉

√

〈(Cmn(t0))2〉 · 〈(Cpq(t0 + τ))2〉
, (7)

The tensor C can be taken as A but the same can also be done for the strain-
rate tensor S = 1

2(A+AT) and the rotation tensor Ω = 1
2 (A-AT), as well as the

pressure Hessian tensor Pij in Eq. (6).
Measurements are presented of ρC(τ) for Cij = Aij, Sij , and Ωij using the

JHU turbulence database with the Lagrangian tracking done using the getPosi-
tion function. Over 10,000 fluid particles initially located at random positions in
the whole domain are tracked over one large eddy turnover time. Tensor values
are extracted along their trajectories. We show results on tensor-based Lagrangian
auto-correlation functions of velocity gradient A and its related parts in Fig. 7.
Repeating the analysis already performed in Ref. [8] we present also the auto-
correlation functions of S (dash line) and Ω (dash dot line). As shown in Fig. 7
and discussed in Ref. [8], the rotation exhibits much more “persistence” in time
than deformation-rate. As can be expected, ρA (sold line in Fig. 7) falls between
ρS(dash line) and ρΩ(dash dot line) because A is a linear combination of S and
Ω. Quantitatively, as S completely loses its time memory when the time lag is
long enough (τ ∼ 10τK), correlation functions of A and Ω display slower decay
and lose most correlation after about τ ∼ 30τK . These trends were already noted
in Ref. [8]. While qualitatively this result is in a good agreement with theoretical
predictions [34], numerical simulations [35, 36] and experimental observations [37],

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

12 Huidan Yu, et al – PREPRINT

here the difference between strain- rate and rotation is much more marked than
that implied by the prior studies which focused on the scalar square-magnitudes
of these variables.

A natural question to ask is what are possible factors that cause the significant
difference in decay rates between strain-rate and rotation-rate.

τ/τK

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

ρS

ρΩ
ρA

Figure 7. Lagrangian auto-correlation function of full tensor A (solid line), its symmetry part (dash dot
line), antisymmetric part (dash line)

One possible factor for the slow decay of rotation-rate could be due to contribu-
tions from fluid particles that occur around and near small-scale vortical structures
(worms). These structures are known to be relatively long-lived. Inside such struc-
tures, the vorticity would be relatively constant, pointing along the axis of the
“worm” and thus the rotation tensor would be time persistent in magnitude and
direction. The idea then is to recompute the autocorrelation function by system-
atically including or excluding rotation-dominated flow regions. There are many
ways to accomplish this and we have experimented with several. In the end, results
pertaining to using the second invariant (Q-criterion) are qualitatively quite sim-
ilar to those of the other criteria, so those based on the Q-criterion are presented
here.

The second invariant of A is defined as Q = −1
2Tr(AA) = −1

2AijAji =
1
2 (ΩijΩij − SijSij) for an incompressible flow (Aii = 0). It is often used to identify
vortices as flow regions with positive Q, i. e. Q > 0 [38]. We undertake analysis
using conditional averaging based on the Q-criterion at the initial time of the cor-
relation function (τ = 0), attempting to include (Q(t0) > 0) or exclude (Q(t0) < 0)
initial points that are more or less likely to be part of “worms” (elongated rotation-
dominated coherent structures). The conditional auto-correlations for rotation-rate
Ω are thus computed according to

ρ+
Ω(τ) ≡

〈Ωij(t0)Ωij(t0 + τ)|Q(t0) > 0〉
√

〈(Ωmn(t0))2|Q(t0) > 0〉〈(Ωpq(t0 + τ))2|Q(t0) > 0〉
, (8)

and similarly ρ−Ω(τ) for Q(t0) < 0.

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 13

t/τK

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

ρS

ρΩ

ρΩ
+ ,Q>0.0

ρΩ
- ,Q<0.0

Figure 8. Conditional auto-correlations of rotation-rate tensor with different Q(0) > 0 and Q(0) < 0.
Lines with filled symbols correspond to Q(0) > 0 (dominated by rotation, plausibly more associated to
“worms”) and lines with empty symbols correspond to Q(0) < 0 (exclusion of “worms” by focussing on
strain-domination). Solid and dashed lines are non-conditional auto-correlations of the rotation-rate tensor
and strain-rate tensor respectively.

In Fig. 8, the line with filled symbols is for positive Q conditional averaging,
designed to focus mostly on worms. It should be remarked that flow visualizations
have shown that Q > 0 isolates quite successfully regions that visually correspond
to elongated vortices in turbulence. Higher thresholds can also be used and the
trends are qualitatively quite similar to those observed. Clearly Fig. 8 shows that
the correlation decay is even slower if one focuses only on the rotation dominated
regions. But the difference with the unconditional results is not that particularly
large. When conditioning on Q < 0, i.e. excluding entirely the rotation dominated
regions, the decay is slightly faster than the unconditional results. However, the
decay is still considerably slower than the decay of S. This demonstrates that the
coherent structures (“worms”) play a role in the slower decay rate of autocorrela-
tion, but perhaps not a dominant role, and certainly not the only one.

Another possible cause for the rapid decay of strain-rate is the distinct role of the
pressure Hessian. The coupled equations (9) and (10) for Lagrangian evolutions of
strain- and rotation-rate tensors can be easily derived from the evolution of velocity
tensor, Eq. (6) [39, 40].

DSij

Dt
= ΩjkΩik − SjkSik − Pij + ν∇2Sij, (9)

DΩij

Dt
= ΩjkSik − SjkΩik + ν∇2Ωij. (10)

In the equations, the symmetric pressure-Hessian appears only in the evolution of
strain-rate, Eq. (9), but not in the rotation-rate equation (10), implying a direct
effect of pressure on strain-rate but only an indirect effect on rotation-rate (through
the vortex stretching and tilting by the strain-rate).

We use two ways to examine how pressure affects the dynamics of strain- and
rotation-rate. First, we examine the correlation functions of terms in the right-

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

14 Huidan Yu, et al – PREPRINT

hand side of Eq. (9) with the rate-of-change of S respectively. Specifically, we
look at the deviatoric parts of the pressure Hessian, P d

ij = −[Pij − Pkkδij/3], and

mutual interaction term, Md
ij = ΩjkΩik − SjkSik − 1/3(ΩmkΩmk − SnpSnp)δij . The

correlation coefficient of the rate-of-change of S, aS = DS/Dt, with these terms is
defined as

ρaSC =
〈aSij

Cij〉
√

〈(aSmn
)2〉〈(Cpq)2〉

(11)

where C can be Pd or Md. We find that the correlation of Pd with aS (ρaSP ∼ 0.75)
is much larger than that of Md with aS (ρaSM ∼ 0.17) implying that pressure Hes-
sian (its deviatoric part) has a more dominant effect on the dynamics of strain-rate
compared to the “velocity gradient self-interaction part”. The pressure Hessian de-
pends upon nonlocal flow processes that at any given position, introduce additional
randomness. Thus, the fact that the temporal decorrelation of strain-rate is much
faster than that of rotation is to be expected if in its evolution equation the effects
of pressure Hessian dominate rather than the self-stretching terms.

In order to explore the effects of the various terms further, we investigate the
dynamics of Sij and Ωij systematically by integrating their evolution equations (9)
and (10), first including only the inviscid self-stretching terms without pressure
or viscosity, then including the pressure Hessian term, and finally, comparing the
results to full DNS which also includes the viscous terms. Numerical time integra-
tion of the ODEs in Eqs. (9) and (10) is performed using a 4th-order Runge-Kutta
algorithm in the cases with only self-stretching, and also with the pressure Hessian
available in the JHU database. The values of Sij, Ωij, and Pij at the start time
of the integration are retrieved along the trajectories. Over 10,000 fluid particle
locations are tracked using the GetPosition function during the time evolution in
order to obtain the instantaneous pressure Hessian components from the turbu-
lence database. We compare the time correlations computed from the solutions of
Eqs. (9) and (10) with the DNS data analysis. In Fig. 9, solid symbols are for
rotation rate while empty symbols are for strain-rate. Three types of results are
shown: circles (DNS analysis, i.e. including self-stretching inviscid terms, pressure
Hessian, as well as viscous terms), squares (dynamics with self-stretching inviscid
terms and pressure Hessian but without viscous terms), and triangles (dynamics
with self-stretching inviscid terms but without pressure Hessian and no viscous
terms).

As can be seen Fig. 9, for the decay of the correlation function for the strain-
rate, the pressure Hessian plays a dominant role in accelerating the decay rate away
from the longer time-scales it would have if only the inertial self-stretching terms
were retained (triangles). Interestingly, if the pressure Hessian term is included but
not the viscous term (squares), the decorrelation is even slightly faster than if the
viscosity is included as in the DNS. The difference is not major and we do not have
any clear explanation why viscous forces would, in this case, slightly increase the
memory of the strain-rate tensor evolution. Conversely, for the rotation memory,
inclusion of pressure Hessian changes the decay of correlation very little. The change
observed occurs because the strain-rate becomes more rapidly decorrelated with
pressure effects, and this modulates the vortex stretching and tilting by the strain-
rate tensor. Inclusion of viscous effects reduces the correlation by a small, further
amount.

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 15

τ/τK

ρ S
 ,ρ

Ω

0 0.02 0.04 0.06 0.08
0.6

0.7

0.8

0.9

1

Ω,RK(NL)
Ω,RK(NL+PH)
Ω,DNS(NL+PH+Vis)
S,RK(NL)
S,RK(NL+PH)
S,DNS(NL+PH+Vis)

Figure 9. Lagrangian autocorrelation functions of strain- and rotation-rate tensors obtained through par-
ticle tracking in the DNS data (circles), and from a Runge-Kuta integration of strain and rotation tensors
according to Eqs. (9) and (10), including pressure Hessian term but without viscous terms (squares) and
without pressure Hessian term nor viscous terms (triangles). In all cases, time-integration is done following
the same particle trajectories tracked in the database using the GetPosition function. NL: Nonlinear term;
PH: Pressure Hessian term; Vis: Viscous term.

5. Testing the Recent Fluid Deformation Approximation to model pressure

Hessian

In this subsection, we examine a recently proposed model for the anisotropic pres-
sure Hessian term in Eq. 6 that can be used in stochastic Lagrangian models
for the velocity gradient tensor. As background about the model, we recall that
assuming the pressure Hessian is isotropic (i.e.neglecting ∂2

ijp−∂2
kkp δij/3) and ne-

glecting the viscous term in Eq. 6 leads to a closed formulation for A, the so-called
Restricted-Euler (RE) equation. The RE system is a set of 9 (8 independent) or-
dinary differential equations for Aij that has analytical solutions [41]. Remarkably
this simple system is already sufficient to explain a number of non-trivial geomet-
rical trends found in real turbulence [41, 42]. Nevertheless, the RE system leads to
nonphysical finite-time singularities because the self-stretching is not constrained
by any energy exchange or loss mechanism in the system. In the past two decades,
modeling efforts have aimed at regularizing the RE system to avoid the nonphysical
singularity (see [13] for a review). One of the efforts is the recent fluid deformation
approximation (RFDA) as proposed in Ref. [43]. The starting point of RFDA is
an Eulerian-Lagrangian change of variables

∂2p(x, t)

∂xi∂xj
≈

∂xp,m

∂xi

∂xp,n

∂xj

∂2p(x, t)

∂xp,m∂xp,n
(12)

where spatial gradients of Dij = ∂xi

∂xp,j
are neglected. As mentioned above, x and xp

denote the Eulerian space location and Lagrangian particle location respectively.

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

16 Huidan Yu, et al – PREPRINT

The Lagrangian pressure Hessian, ∂2p(x,t)
∂xp,m∂xp,n

, is modeled as an isotropic tensor

based on the assumption that as time progresses, one loses memory about the
relative orientations of the initial locations xp as far as the present value of pressure

is concerned. By introducing the Cauchy-Green tensor C, Cij ≡ ∂xi

∂xp,m

∂xj

∂xp,n
, and

using the Poisson equation as a constraint, the pressure Hessian becomes

∂2p(x, t)

∂xi∂xj
= −

Tr(A2)

Tr(C−1)
C−1

ij (13)

Based on the idea that any causal relationship between initial and present orien-
tations will be lost after a characteristic Lagrangian correlation time scale of the
tensor A, the Cauchy-Green tensor C in Eq. (13) is further replaced by a new ten-
sor called the “recent Cauchy-Green tensor” CτK

that can be expressed in terms
of simple matrix exponentials CτK

= eτKAeτKAT

.
The trace of the pressure Hessian requires no modeling, since it is equal to the

trace of −A2, by construction in the model, and by the incompressibility condi-
tion in real turbulence. Hence, we only examine the deviatoric part of this tensor.
We compare the temporal auto-correlations of the deviatoric pressure Hessian by
using the tensor-based correlation function as defined in Eq. 7. Particle tracks are
evaluated using GetPosition function using over 10,000 particles. The model uses
matrix exponential evaluations [44]. The results are shown in Fig. 10. The dashed
line is from the RFDA-based model, and the solid line from the DNS. It is seen that
the auto correlations computed from the model decay more slowly then the DNS.
The deviatoric pressure Hessian in DNS looses most of its memory at τ ≈ 1.5τK

whereas the model term maintains some memory up to τ ≈ 4τK . While the model
has shown promise in predicting many features of the velocity gradient tensor in
turbulence [43, 45], challenges remain in applications at high Reynolds numbers.
The present observations of differing correlation times may point to possible im-
provements in the model.

Next, we test how the modeled pressure Hessian captures features of individual
realizations and time series of the two most relevant invariants of the velocity gra-
dient A, the Q and R invariants. Q has already been defined as Q = −1

2AijAij ,

while R is given by R = −1
3AijAjkAki. Physically these invariants are interpreted as

quantifying the competition of enstrophy vs. dissipation, and of enstrophy produc-
tion vs. dissipation production, respectively. The dynamics and statistics of these
two variables has attracted much interest. Their evolution equations are derived
by forming appropriate products with Eq. (6) and taking the trace [41]:

dQ

dt
= −3R − AikPki − AikVki (14)

dR

dt
=

2Q2

3
− AijAjkPki − AijAjkVki (15)

where Vij ≡ ν∂2A/∂xi∂xj.
We track a single particle and record a time-series of relevant terms, across the

entire time range available in the database. Figure 11 shows the various terms
from the DNS. The dashed line is the rate of change of Q and R as evaluated from
their database values along the trajectory, the circles are the restricted Euler self-
stretching term, the solid line comes from the pressure Hessian, and the triangles
is the viscous term. The viscous term is evaluated based on taking the difference

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 17

t/τK

0 0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

ρd
P,DNS

ρd
P, model

Figure 10. Lagrangian auto-correlation function of deviatoric pressure Hessian from DNS (solid line) and
modeling (dash line).

of the other terms on the right-hand-side to the temporal rates of change of Q and
R.

As can be seen, the dynamics are highly intermittent, with a sudden, rapid burst
of activity near t/τK ∼ 31 for this particular fluid particle’s history. It is observed
that the pressure Hessian is the major contribution to the sum and it mainly op-
poses the self-stretching, whereas the viscous term is small and contributes only
marginally. Very interestingly, close examination shows that the pressure Hessian
has a “phase delay” that follows the rapid changes in the velocity gradient invari-
ants. The delay appears to be of the order of ∼ 1

2τK .
Next, the ability of the RFDA-based model of Ref. [43] for pressure Hessian to

predict the effects on the invariants is shown by providing an enlarged view of
the time-series, in the vicinity of where the burst of activity is observed. In Fig.
12 we compare the DNS pressure Hessian term with that predicted by the RFDA
model, where the pressure Hessian contracted with Aij and AikAkj is obtained
from the RFDA-based model. Qualitatively there is a general agreement of the
occurrences of large peaks, and their signs. However, the model amplitudes appear
to be somewhat too large, and the model does not predict some of the smaller-
amplitude fluctuations. It is also quite obvious that the model “predates” the real
pressure Hessian by about ∼ 1

2τK , which is not surprising since it is based on the
local velocity gradient tensor through the matrix exponential closure. Finally, the
previous observations can be made more quantitative by computing the two-time
cross-correlation function between the real and modeled pressure Hessian tensors.
We use an expression similar to Eq. 7 written as a cross-correlation between two
different tensor time signals. In particular, in Eq. 7 we take Cij(t0) to be the
modeled pressure Hessian, and Cij(t0 + τ) to be the real Hessian tensor. Figure 13
shows the resulting cross-correlation function. It confirms the prior observations:
there is a peak correlation after a time-delay of about ∼ 1

2τK , so that the model
predates the real pressure Hessian signal in time. The correlation peak of around
40% is quite substantial, given the many assumptions made in deriving the model.

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

18 Huidan Yu, et al – PREPRINT

τ/τK

0 10 20 30 40

-0.5

0

0.5

1

dQ/dt
-3R
PQ

VQ

τ/τK

10 20 30 40

-0.5

0

0.5

dR/dt
2Q2/3
PR

VR

Figure 11. Sample time series for the various terms in the evolution of Q (top) and R(bottom) for some
fluid particle along its trajectory during the entire time duration of the database (approximately one
large-eddy turnover time).

Such observations will be useful in motivating further improvements to the model.

t/τK

P
Q

25 30 35 40

-0.5

0

0.5

1

1.5

2

DNS
model

t/τK

P
R

25 30 35 40
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

DNS
model

Figure 12. Contributions of pressure Hessian to the dynamics of Q (left) and R (right). DNS: solid line;
model: dash line.

6. Summary and discussion

This paper describes algorithms and implementation details of updates to the JHU
turbulence public database system, made after the first publication [2] describing
the original system. The updates include new GetFunctions, namely GetPosition to
track number of fluid particles moving along with the simulated flow and is useful
in Lagrangian studies of turbulence. Also, the GetForce function is developed in

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 19

τ/τK

ρ M
od

-D
N

S
 (

τ)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Figure 13. Two-time cross-correlation function between real and modeled pressure Hessian (its deviatoric
part).

order to query the forcing term that was used in the DNS during the simulation
(see Appendix A).

Table 2 lists the complete getFunctions available to use.

Function name Spatial diff. Spatial int. Temporal int. Outputs
GetVelocity – NoInt, Lag4,6,8 NoInt, PCHIP ui

GetVelocityAndPressure – NoInt, Lag4,6,8 NoInt, PCHIP ui, p

GetVelocityGradient FD4,6,8 NoInt, Lag4,6,8 NoInt, PCHIP ∂ui

∂xj

GetPressureGradient FD4,6,8 NoInt, Lag4,6,8 NoInt, PCHIP ∂p
∂xi

GetVelocityHessian FD4,6,8 NoInt, Lag4,6,8 NoInt, PCHIP ∂2uk

∂xi∂xj

GetPressureHessian FD4,6,8 NoInt, Lag4,6,8 NoInt, PCHIP ∂2p
∂xi∂xj

GetVelocityLaplacian FD4,6,8 NoInt, Lag4,6,8 NoInt, PCHIP ∂2ui

∂xj∂xj

GetForce – NoInt, Lag4,6,8 NoInt, PCHIP fi

GetPosition – Lag4,6,8 PCHIP xi(tET)
Table 2. List of GetFunctions for queries to the JHU turbulence public database. The entries mean: diff –

differentiation (FD: Centered finite difference, options for 4th-, 6th-, and 8th-order accuracies); int – interpolation

type (NoInt: no interpolation; Lag: Lagrangian polynomial interpolation, options for 4th-, 6th-, and 8th-order

accuracies); PCHIP: Piecewise cubic Hermite interpolation.

Other recent upgrades also include improved interpolation schemes (Appendix
B) and a new library for Matlab access (Appendix C).

The new GetPosition function was applied to measure various Lagrangian statis-
tical features of turbulence. In terms of Lagrangian structure functions, we docu-
ment good agreement with a variety of previously published results, both numerical
and experimental. New results are obtained in characterizing the precise effects of
pressure Hessian and viscous terms in the Lagrangian evolution of the strain-rate
and rotation tensors. The faster decay of autocorrelation for the strain-rate tensor
is confirmed to be, clearly, related to the pressure Hessian effects. They tend to be
more “stochastic” than the self-stretching terms. The viscous terms were seen to
slightly enhance the memory for the strain-rate, while decreasing memory for the
rotation rate (or vorticity).

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

20 Huidan Yu, et al – PREPRINT

The new tool was also used to examine the time evolution of the pressure Hessian
and to compare it with a recent model based on the local velocity gradient tensor.
The comparisons were made using the Lagrangian autocorrelation function and its
rate of decay, comparing the DNS with the model. It was found that the model
decays more slowly, showing that the true pressure Hessian has dynamics that are
shorter-lived than the velocity gradients upon which the model is based. Some
representative observations about the model were also made on hand of individual
time traces along Lagrangian trajectories, comparing terms in the equations of
invariants Q and R. It is observed that the pressure Hessian ‘lags’ strong excursions
in velocity gradients, consistent with a “restitution mechanism” that needs some
time to build up the required response.

Further developments of the public database system are being sought, includ-
ing additional datasets such as magneto-hydrodynamic turbulence, and turbulent
channel flow.

The authors acknowledge the valuable assistance from other members of the
database team (Jan VandeBerg, Rich Ercolani, Sue Werner and Victor Paul). This
research is supported by a National Science Foundation CDI-II grant, # CMMI-
0941530. E. Frederick acknowledges international travel support from the Eind-
hoven University of Technology.

Appendix A. GetForce function

Information about the forcing term fi(x, y, z, t) (force per unit mass, i = x, y, z)
applied during the DNS has been stored in the database and can be retrieved using
the function GetForce.

During DNS, an effective forcing is applied in Fourier space by rescaling low-k

Fourier modes (with magnitudes 0.5 ≤ k ≤ 2.5, k =
√

k2
x + k2

y + k2
z) to maintain

their kinetic energy to prescribed values consistent with a −5/3 spectrum. The
forcing region is divided into two shells, 0.5 ≤ k ≤ 1.5 and 1.5 < k ≤ 2.5. The
spectrum is held fixed at a value of 0.3 in shell 0.5 ≤ k ≤ 1.5, and at a value equal
to 0.13 in shell 1.5 < k ≤ 2.5 shell (these values are obtained empirically so that
the simulated spectrum is close to a k−5/3 trend at low k).

In order to represent the rescaling in terms of a forcing term, we express the time-
advancement in terms of a first-order time-advancement and write the discretized
Navier-Stokes equation (NSE) in Fourier space as follows

ûn+1
i (kx, ky, kz) = ûn+

i (kx, ky, kz) + f̂i(kx, ky, kz)dt (A1)

in which ûn+
i = ûn

i + (· · ·)dt with (· · ·) for terms on the right-hand side of the
Navier-Stokes equations, but excluding the forcing term. Also, dt is the time-step
of the DNS.

In the DNS, the rescaling induces a difference between ûn+
i and ûn

i in the wave-
number range 0.5 ≤ k ≤ 2.5 that is equivalent to a force-term defined in the two
shells as follows

f̂n
i (kx, ky, kz) =

1

dt





0.55
√

∑

0.5≤k≤1.5[(û
n+
x)2 + (ûn+

y)2 + (ûn+
z)2)]/2

− 1



 ûn+
i (kx, ky, kz)

(A2)

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 21

for shell 0.5 ≤ k ≤ 1.5 and

f̂n
i (kx, ky, kz) =

1

dt





0.36
√

∑

1.5≤k≤2.5[(û
n+
x)2 + (ûn+

y)2 + (ûn+
z)2)]/2

− 1



 ûn+
i (kx, ky, kz)

(A3)
for shell 1.5 < k ≤ 2.5, where ûx, ûy, ûz denote the three velocity components in

Fourier space and k =
√

k2
x + k2

y + k2
z is the magnitude of wavenumber vector k.

In this way, the energy in these shells E(k = 1) =
∑

0.5≤k≤1.5(û
2
x + û2

y + û2
z)/2 and

E(k = 2) =
∑

1.5<k≤2.5(û
2
x + û2

y + û2
z)/2 is maintained at 0.3 and 0.13.

There exist in total 80 discrete wave-number modes in these two shells. There
are 20 modes for kx = 0, 30 modes for kx > 0, and another 30 modes for kx < 0. In
the database, the complex Fourier coefficients f̂x, f̂y, f̂z corresponding to kx ≥ 0
(50 modes) are stored, the remaining 30 modes (kx < 0) are the conjugates of the
modes kx > 0.

Using the GetForce function, force values at any prescribed position (x, y, z)
are evaluated in the database from the forcing’s Fourier coefficients using direct
summation of the Fourier series, according to

fi(x, y, z, tn) =
∑

kx,ky,kz

ei(kxx+kyy+kzz) f̂n
i (kx, ky , kz) (A4)

where i can be x, y, and z. Values of fi(x, y, z, t) at arbitrary times t can be obtained
by specifying PCHIP temporal interpolation.

In order to document the use of this function, we examine various terms in the
Navier-Stokes equations

∂tu + u · ∇u = −∇p + ∇2u + f (A5)

that were solved during DNS (as explained above, the forcing term is implicitly
included in the spectral rescaling at every time-step). We evaluate the local square
error defined according to

σ2
dif = 〈

[

∂tu + u · ∇u− (−∇p + ∇2u + βf)
]2
〉. (A6)

The goal is to compare the case where we include (β = 1) and do not include (β = 0)
the forcing term. We would expect that including the forcing term should reduce
the error. If we evaluate the velocity gradients occurring in the nonlinear term, the
pressure gradient, and the viscous Laplacian using pseudo-spectral differentiation,
and use the same time-differentiation as used in the DNS, the error should be
exactly zero (to machine accuracy) at every point in the domain. However, if we
use the spatial finite differencing available in the getFunctions, and the first-order
time derivative, some error is expected. Instead, if we box-filter each of the terms in
boxes of size ℜ, with increasing ℜ the error would be expected to become smaller.
Especially the difference between including and not including the forcing term
(which by construction only affects the very largest scales of the flow), is expected
to become larger as ℜ grows.

Thus, we also define the error associated with the coarse-grained terms, according
to

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

22 Huidan Yu, et al – PREPRINT

σ2
dif,ℜ = 〈

(

[∂tu + u · ∇u]ℜ −
[

(−∇p + ∇2u + βf
]

ℜ
)
)2
〉. (A7)

The square brackets [...]ℜ denote box filtering in a cube of size ℜ. In Figure A1 we
show dependence of the rms error σdif,ℜ as function of ℜ.

The computation of σdif follows three steps: First, randomly generate N cubes
with size ℜ in the whole domain; second, collect all the terms in Eq. (A5) by calling
getVelocity, getVelocityGradient for the left-hand side and getPressureGradient,
getVelocityLaplacian, and getForce for the right-hand side for every point in each
cube and compute the mean of each term; third, evaluate the square error. The
filter size ℜ varies from 0.006 to 0.3, corresponding 1 to 49 grid-points. In the figure,
it is seen that when the filter size is small, say ℜ < 0.02, forcing seems not to play a
role because the numerical errors introduced from differentiation and time/spatial
interpolations dominate and suppress any effects of the forcing term. As the filter
size increases the numerical errors fade such that the forcing term becomes more
important. When the filter size is large enough, e.g. ℜ > 0.2, the difference between
left- and right- hand side of Eq. (A5) vanish when forcing is included, while σrms,ℜ

without forcing remains quite large making the effects of the forcing term apparent
in closing the balance in the momentum equation.

ℜ

σ rm
s

0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

without force term

with force term

Figure A1. Magnitude of error between left- and right-hand side of Eq. (A5) and dependence on the box
filtering size ℜ, including the force term (closed circles) and not including the force term (empty circles).

Appendix B. Partial sums evaluation for interpolations

We have implemented a new method for the evaluation of the spatial interpolation
used in the database routines, which we summarize below. The method is described

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 23

in more detail in [46]. It is also applicable to the temporal interpolation and differ-
entiation evaluations, but we are still in the process of implementing it for those
computations.

The database routines perform Lagrange polynomial interpolation of order spec-
ified by the user. For N th order Lagrange polynomial interpolation of a point p′ in
3-d space we have:

f(p′) =

N
∑

k=1

l
q−N

2
+k

z (z′)

N
∑

j=1

l
p−N

2
+j

y (y′)

N
∑

i=1

l
n−N

2
+i

x (x′)

·f(xn−N

2
+i, yp−N

2
+j, zq−N

2
+k) . (B1)

In the above p′ = (x′, y′, z′) is the target location and the data stored in the
database at location (xi, yj, zk) is given by f(xi, yj, zk). Since data in the database
are stored at the nodes of a discrete grid, the grid location (xn, yp, zq) is computed

as n = int(x′

∆x + 1
2), p = int(y′

∆y + 1
2), q = int(z′

∆z + 1
2), where ∆x, ∆y, ∆z are the

widths of the grid in the x, y and z dimensions. The Lagrange coefficients l in Eq.
(B1) are as follows:

liθ(θ
′) =

α+ N

2
∏

j=α−N

2
+1,j 6=i

(θ′ − θj)

α+ N

2
∏

j=α−N

2
+1,j 6=i

(θi − θj)

, (B2)

where θ can be x, y or z and α can be n, p or q, respectively.
The evaluation of the Lagrange polynomial interpolation requires data from a

cube of width N around the target location. In the current version of the database
edge overlap ensures that all of the necessary data are contained within a single
database atom, and hence a single database I/O is needed to perform the compu-
tation. However, in general the data may be spread across multiple such database
atoms or even across multiple database servers. In order to ensure the efficient pro-
cessing of large batch queries submitted by our users we evaluate the interpolation
by means of partial sums.

Lagrange polynomial interpolation as well as any other linear computation can
be executed in parts by maintaining and updating a partial sum of the final result.
We make use of this observation to evaluate multiple target positions at the same
time and by means of a single, sequential pass over the data. We process all target
positions in a user’s batch and determine the entire set of database atoms that need
to be read from the database in order to perform the interpolation of each target.
For each database atom read from the database we increment the partial sums of
all target positions, whose interpolation kernel intersects the database atom. Once
all such atoms are processed the interpolation of each target position has been
evaluated.

We make use of the efficient procedures of Purser and Leslie [47] in the com-
putation of the Lagrange coefficients. They present efficient ways to organize the
coding, eliminating redundant multiplications and making use of the fact that the
values in the denominator of Eq. (B2) are constant to reduce the time complexity
of the computation of the coefficients to O(N) from O(N3).

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

24 Huidan Yu, et al – PREPRINT

Appendix C. Matlab interface

The Matlab interface allows clients to interact with the turbulence database directly
from a Matlab session. This interface is based on Matlab web service functions
which communicate with the database directly using the Simple Object Access
Protocol (SOAP). All communication with the JHU Turbulence Database Clus-
ter is controlled through the TurbulenceService Matlab class. This class creates
SOAP messages, queries the database, and parses the database response. For each
database function a wrapper function has been created to perform the data trans-
lation and retrieval. One major advantage of the Matlab interface to that of its
C and Fortran counterparts is the readily available functions and toolboxes that
Matlab provides. With the Matlab interface, clients can retrieve sections of spa-
tiotemporal data from the database, view the data with Matlab’s plotting tools or
perform secondary calculations on the data, all from the same Matlab session.

A standard distribution of Matlab contains a set of functions for creating (create-
SoapMessage), sending (callSoapService) and parsing (parseSoapResponse) SOAP
messages. These routines use a W3C compliant Document Object Model (DOM)
approach for constructing and parsing the Extensible Markup Language (XML)
formatted SOAP message. The DOM provides a generic mechanism to create XML
documents. However, while being robust and dynamic, the DOM approach holds
the disadvantage of being computationally inefficient for large XML documents
– this inefficiency becomes a limiting factor for large database queries. To avoid
this critical problem, we have developed faster replacement functions to create and
send the SOAP message, and to parse the SOAP response. Therefore, by perform-
ing low-level string operations instead of the employing the DOM, we can rapidly
build and parse extensive XML documents leading to a 100x speedup over the
original DOM approach. Due to this increase in efficiency, the Matlab interface
possess similar performance characteristics as those of the C and Fortran database
interfaces.

The basis for the Matlab database functions are created by using the create-
ClassFromWsdl utility. This utility generates the TurbulenceService Matlab class
from the Web Service Definition Language (WSDL) functions of the database web
service. These generated files are modified to incorporate the newly developed
faster Matlab SOAP routines. The purpose of the TurbulenceService class is to
accommodate a request to the database by taking data from Matlab, generating
an appropriate SOAP message, sending the message to the database and finally
retrieving and parsing the database response. While providing a direct mechanism
for interacting with the database, the TurbulenceService class returns data pack-
aged in a Matlab structure array which may not be necessarily intuitive to most
Matlab users. We have, therefore, created wrapper functions which translate the
response structure into directly accessible Matlab vectors.

The following code snippets illustrate the complete mechanism, starting from
user-generated request data and ending with a parsed database response, stored
in response. From a Matlab script, request data will be provided to the getVelocity
TurbulenceService wrapper function as demonstrated in Listing 1. This wrapper
function calls the TurbulenceService TS getVelocity function (see Listing 2), and
translates its structure into a vector of velocity components. The TS getVelocity
function illustrated in Listing 3 assembles the data in a Matlab structure, cre-
ates the SOAP message, sends the SOAP message and parses the SOAP response.
(A similar TurbulenceService is implemented for the getPosition function, as illus-
trated in Listing 4).

For illustration of getVelocity, in Figure C1(a) is a velocity contour plot of sample

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence - PREPRINT 25

Listing 1 Example call to getVelocity from Matlab interface� �
% Set c l i e n t authent icat ion key
authkey = ’ ... ’ ;
% Set targe t database
datase t = ’ isotropic1024coarse ’ ;
% Set temporal in t e rpo la t ion scheme
temporal = ’ PCHIP ’ ;
% Set s p a t i a l in t e rpo la t ion scheme
s p a t i a l = ’ Lag6 ’ ;

% Create a se t o f (x , y , z)−coordinates to query at a randomly
% chosen time step
po in t s (1 : 3 , :) = . . . ;
time = 0.002 ∗ rand i (1024 , 1) ;

% Cal l TurbulenceService wrapper to perform ge tVe loc i t y request at
% spe c i f i e d points
re sponse = ge tVe l o c i t y (authkey , dataset , time , . . . , p o i n t s) ;

� �

data from the turbulence database. The data was retrieved using the getVelocity
function from the Matlab interface and the contour plot was generated using Mat-
lab standard countour plotting tools. In Figure C1(b) a visualization of ‘worms’ i
shown in a small subcube of the data at t = 0, using iso-Q surfaces generated using
the Matlab implementation of getVelocityGradients to evaluate Aij , computing the
invariant Q = −1

2AijAji at every point in Matlab, and using Matlab 3D plotting
tools.

(a) (b)

Figure C1. (a) Velocity contour plot generated using the Matlab interface as available for download.
(b) Visualization of ‘worms’ using iso-Q surfaces in a small subset of the data, generated using
the Matlab implementation of getVelocityGradients to evaluate Aij , computing the invariant Q =

− 1

2
AijAji at every point and using Matlab 3D plotting tools.

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

26 Huidan Yu, et al – PREPRINT

Listing 2 Sample getVelocity wrapper function� �
function re sponse = ge tVe l o c i t y (authkey , dataset , time , . . . , p o i n t s)

% Create the TurbulenceService ob je c t and c a l l TS getVe loc i ty
obj = Turbu lenceServ ice ;
r e spon seS t ru c t = TS getVe loc i ty (obj , authkey , dataset , . . . , p o i n t s) ;

% Return a vec tor of v e l o c i t y components
re sponse = getVector (r e s u l t S t r u c t . GetVe loc i tyResu l t . Vector3) ;

end

� �

Listing 3 Sample TS getVelocity TurbulenceService class function� �
function r e spon seS t ru c t = TS getVe loc i ty (obj , authkey , dataset , . . . , p o i n t s)

% Construct a Matlab s t ruc tu re containing the data
data = s t r u c t (’ points ’ , s t r u c t (’x ’ , p o i n t s (1 , :) , . . .) , . . .) ;

% Create the XML document , c a l l the se rv ic e and parse the response
soapMessage = createSoapMessage (’ GetVelocity ’ , data , . . .) ;
r e sponse = ca l l SoapSe rv i c e (URL, soapMessage , . . .) ;
r e spon seS t ru c t = parseSoapResponse(re sponse) ;

end

� �

Listing 4 Example call to getPosition from Matlab interface� �
% Set c l i e n t authent icat ion key
authkey = ’ ... ’ ;
% Set targe t database
datase t = ’ isotropic1024coarse ’ ;
% Set s p a t i a l in t e rpo la t ion scheme
s p a t i a l = ’ Lag6 ’ ;

% getPosi t ion in te g ra t ion s e t t i n g s
startTime =0.364;
endTime=0.376;
lagDt =0.0004;

% Create a se t o f (x , y , z)−coordinates
po in t s (1 : 3 , :) = . . . ;

% Cal l TurbulenceService wrapper to perform getPosi t ion request at
% spe c i f i e d points between startTime and endTime
re sponse = ge tPos i t i on (authkey , dataset , startTime , endTime , lagDt , . . . , p o i n t s) ;

� �

..

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

Journal of Turbulence – PREPRINT 27

References

[1] http://turbulence.pha.jhu.edu.
[2] Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G.

Eyink, A public turbulence database cluster and applications to study Lagrangian evolution of velocity
increments in turbulence, J. Turbulence 9 (2008), N31.

[3] P. K. Yeung, S. B. Pope, & B. L. Sawford, Reynolds number dependence of Lagrangian statistics in
large numerical simulations of isotropic turbulence, J. Turbulence 7 (2006), N58.

[4] S. Hoyas & J. Jimenez, (2006) Scaling of velocity fluctuations in turbulent channels up to Reτ = 2000,
Phys. of Fluids 18 (2006), 011702.

[5] J. Schumacher, K. R. Sreenivasan, and V. Yakhot, Asymptotic Exponents from Low-Reynolds number
flows, New J. Phys., 89 (2007), 1 – 19.

[6] T. Ishihara, T. Gotoh, & Y. Kaneda, Study of high Reynolds number isotropic turbulence by direct
numerical simulation,Annu. Rev. Fluid Mech. 41 (2009), 4165 – 80.

[7] B. Lüthi,M. Holzner, & A. Tsinober, Expanding the QR space to three dimensions, J. Fluid Mech.
641 (2009), pp.497 – 501.

[8] H. Yu and C. Meneveau, Lagrangian Refined Kolmogorov Similarity Hypothesis for Gradient Time-
evolution in Turbulent Flows, Phys. Rev. Lett. 104(2010), pp. 084502.

[9] H. Yu and C. Meneveau, Scaling of conditional Lagrangian time correlation functions of velocity and
pressure gradient magnitudes in isotropic turbulence, Flow,Turbulence and Combustion, 85 (2010),
pp. 457 – 472.

[10] M. Holzner, M. Guala, B. Lüthi, A. Liberzon, N. Nikitin, W. Kinzelbach, and A. Tsinober, Viscous
tilting and production of vorticity in homogeneous turbulence, Phys. Fluids 22 (2010), pp. 061701-1
– 4.

[11] A. G. Gungor & S. Menon, A new two-scale model for large eddy simulation of wall-bounded flows,
Prog. Aero. Sci., 46 (2010), 28 – 45.

[12] W. Liu and E. Ribeiro, Scale and Rotation Invariant Detection of Singular Patterns in Vector Flow
Fields, SSPR & SPR Proceedings of the 2010 joint IAPR international conference on Structural,
syntactic, and statistical pattern recognition, LNCS 6218, pp. 522531.

[13] C. Meneveau, Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows,
Annu. Rev. Fluid Mech. 43 (2011), 219 – 245.

[14] C. C. Wu and T. Chang, Rank-Ordered Multifractal Analysis (ROMA) of probability distributions in
fluid turbulence, Nonlin. Processes Geophys., 18 (2011), 261 – 268.

[15] G. L. Eyink, Stochastic flux freezing and magnetic dynamo, Phys. Rev. E, 83, 056405.
[16] F. Toschi iCFDdatabase2, http://mp0806.cineca.it/icfd.php (examined December 2011).
[17] G. I. Taylor, Diffusion by continuous movements, Proc. London Math. Soc. 20 (1921), 196 – 212.
[18] L. F. Richardson, Atmospheric diffusion shown on a distance-neighbor graph, Proc. Roy. Soc. London,

Ser. A 110 (1926), 709 – 737.
[19] A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large

Reynolds numbers, Dokl. Akad. Nauk SSSR 30 (1941), 301 – 314; also Proc. R. Soc. A 434 (1991), 9
– 13.

[20] B.I. Shraiman, E.D. Siggia, Scalar turbulence, Nature 405(2000), pp. 639 – 646.
[21] B. Sawford, Turbulent relative dispersion, Annu. Rev. Fluid Mech. 33 (2001), pp. 289317.
[22] P. K. Yeung, Lagrangian investigations of turbulence, Annu. Rev. Fluid Mech. 34 (2002), pp. 115 –

142.
[23] F. Toschi and E. Bodenschatz, Lagrangian properties of particles in turbulence, Annu. Rev. Fluid

Mech. 41 (2009), pp. 375 – 404.
[24] G. Falkovich, K. Gawedzki, and M. Vergassola, Particles and fields in fluid turbulence, Rev. Mod.

Phys. 73 (2001), pp. 913 – 975.
[25] M. Holzner, A. Liberzon, N. Nikitin, B. Lüthi, W. Kinzelbach, and A. Tsinober, A Lagrangian in-

vestigation of the small-scale features of turbulent entrainment through particle tracking and direct
numerical simulation, J. Fluid Mech. 598 (2008), pp.465 – 475.

[26] S. B. Pope, Lagrangian PDF methods for turbulent flows, Annu. Rev. Fluid Mech. 26 (1994), pp. 23
– 63.

[27] R. Zimmermann, H.T. Xu, Y. Gasteuil, M, Bourgoin, R. Volk, JF Pinton, E. Bodenschatz,The La-
grangian exploration module: An apparatus for the study of statistically homogeneous and isotropic
turbulence, Rev Sci. Instru., 81 (2010), 055112.

[28] D. H. Kelley and N. T. Ouellette, Separating stretching from folding in fluid mixing, Nature Phys. 7
(2011), 477 – 480.

[29] Szalay, A., S. P. Z. Kunszt, A. Thakar, J. Gray, D. Slutz, and R. J. Brunner, Designing and min-
ing multi-terabyte Astronomy archives: the Sloan Digital Sky Survey, In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2000.

[30] U. Frisch, Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge,
1995.

[31] L. Biferale, E. Bodenschatz, M. Cencini, A. S. Lanotte, N. T. Ouellette, F. Toschi, and H. Xu,
Lagrangian structure functions in turbulence: A quantitative comparison between experiment and
direct numerical simulation, Phys. Fluids 20 (2008), pp. 065103-1 – 12.

[32] L. Biferale, G. Boffetta, A. Celani, A. Lanotte and F. Toschi, Particle trapping in three-dimensional
fully developed turbulence, Phys. Fluids 17 (2005), 021701.

[33] R. Benzi, L. Biferale, E. Calzavarini; D. Lohse, and F. Toschi, Velocity-gradient statistics along particle
trajectories in turbulent flows: The refined similarity hypothesis in the Lagrangian frame, Phys. Rev.
E 80 (2009), Art. 066318.

[34] R. H. Kraichnan and J. R. Herring, A strain-based Lagrangian-history turbulence theory J. Fluid
Mech. 88 (1978), 355 – 367.

[35] P. K. Yeung, Lagrangian characteristics of turbulence and scalar transport in direct numerical sim-

March 6, 2012 17:32 Journal of Turbulence getPosition-Yuetal2011-production

28 Huidan Yu, et al – PREPRINT

ulations, J. Fluid Mech. 427 (2001), 241 – 274.
[36] P. K. Yeung, S. B. Pope, E. A. Kurth, and A. G. Lamorgese Lagrangian conditional statistics, accel-

eration and local relative motion in numerically simulated isotropic turbulence, J. Fluid Mech. 582
(2007), 399 – 422.

[37] M. Guala, A. Liberzon, A. Tsinober, and W. Kinzelbach, An experimental investigation on Lagrangian
correlations of small-scale turbulence at low Reynolds number, J. Fluid Mech. 574 (2007), 405 –427.

[38] J. C. R.,Hunt, A. A. Wray, & P. Moin, Eddies, stream, and convergence zones in turbulent flows,
Center for Turbulence Research Report CTR-S88 (1988), pp. 193 — 208.

[39] K. K. Nomura & G. K. Post, The structure and dynamics of vorticity and rate of strain in incom-
pressible homogeneous turbulence, J. Fluid Mech., 377 (1998), pp. 65 – 97.

[40] A. Tsinober, An Informal Conceptual Introduction to Turbulence, 2nd ed.,Springer, 2009.
[41] B. J. Cantwell, Exact solution of a restricted Euler equation, Phys. Fluids A 4 (1992), 782.
[42] P. Vieillefosse, Local interaction between vorticity and shear in a perfect incompressible fluid, J. Phys.

(France) 43 (1982), 837.
[43] L. Chevillard and C. Meneveau, Lagrangian dynamics and statistical geometric structure of turbu-

lence, Phys. Rev. Lett. 97 (2006), 174501.
[44] Y. Li, L. Chevillard, G. L. Eyink, and C. Meneveau, Matrix exponential-based closures for the tur-

bulent subgrid-scale stress tensor, Phys. Rev. E, 79 (2009), 016305.
[45] L. Chevillard, L. Biferale, F. Toschi and C. Meneveau, Modeling the pressure Hessian and viscous

Laplacian in Turbulence: comparisons with DNS and implications on velocity gradient dynamics,
Phys. Fluids 20 (2008), 101504.

[46] K. Kanov, E. Perlman, R. Burns, Y. Ahmad, and A. Szalay, I/O Streaming Evaluation of Batch
Queries for Data-Intensive Computational Turbulence, to appear SC11, 2011.

[47] R. J. Purser and L. M. Leslie, An Efficient Interpolation Procedure for High-Order Three-Dimensional
Semi-Lagrangian Models, Monthly Weather Review, 119 (1991), 2492.

