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ABSTRACT
We describe a method for evaluating computational turbu-
lence queries, including Lagrange Polynomial interpolation,
based on partial sums that allows the underlying data to
be accessed in any order and in parts. We exploit these
properties to stream data from disk in a single pass and
concurrently evaluate batch queries. The combination of se-
quential I/O and data sharing improves performance by an
order of magnitude when compared with direct evaluation of
each query. The technique also supports distributed evalua-
tion of queries in a database cluster, assembling the partial
sums from each node at the query mediator. Interpolation
is fundamental to computational turbulence, over 95% of
queries use these routines, and the partial sums method al-
lows the JHU Turbulence Database Cluster to realize scale
and throughput for our scientists’ data-intensive workloads.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Scientific databases, Statistical databases; H.2.4 [Database
Management]: Systems—Query Processing

General Terms
Design, Performance

Keywords
Data-intensive computing, I/O streaming, query evaluation,
query optimization, database clusters, software for high-
throughput computing.

1. INTRODUCTION
Data-intensive computing has revolutionized access to the

computational simulation of turbulence. Previously, high-
resolution data were available only to researchers using high-
performance computing facilities. Researchers perform large
simulations that are analyzed during the computation with
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only a small subset of data stored for subsequent analy-
sis. As a result, the same simulations must be repeated
after new questions arise that were not initially obvious;
most breakthrough concepts cannot be anticipated in ad-
vance. In order to provide public access to world-class sim-
ulations, we have built the Turbulence Database Cluster at
Johns Hopkins. This data-intensive service allows users to
query the entire space-time evolution of the direct numeri-
cal simulation (DNS) of forced isotropic turbulence [7, 10].
It supports ad-hoc querying and data mining. Experiments
execute against stored data and may be varied or repeated
without re-simulation. The service currently occupies 67 TB
in two databases managed by the 50 node, 1.1 PB Graywulf
cluster [14].

A clustered database approach to computational turbu-
lence has revealed performance issues for data-intensive
workloads. Query throughput and system scalability limit
the utility of the service, restricting the number of concur-
rent queries and increasing the time needed to complete ex-
periments. Heavy usage can slow down the service by a
factor of 10 to 20. The first iteration of query evaluation
techniques [7] were adapted from simulation code and ex-
hibit poor access locality at all levels of the memory hierar-
chy and incur substantial storage overhead associated with
the replication of data across nodes. The predominant tur-
bulence query performs spatial interpolation of a vector field
at a specific point based on high-order Lagrange Polynomi-
als. To evaluate each point query requires a kernel computa-
tion (Figure 2) using data points from the simulation, e.g. 83

data points for 8th order Lagrange Polynomial interpolation.
Typically, scientists request batches of up to 100,000 point
queries from the same simulation timestep. Evaluation of
these queries consists of embedded loops that iterate over
the kernel of computation. This does not access data co-
herently; it retrieves data from the same cache line or page
in multiple loop iterations. It also accesses the same data
values multiple times when the kernels of multiple queries
overlap.

To improve memory and I/O performance, we define a
data-driven partial-sums method for the concurrent evalua-
tion of multiple high-order Lagrange interpolation queries in
a single, streaming pass over the data. Since the Lagrange
interpolation is a linear combination of the data values and
the Lagrange polynomials, which only depend on the target
position and the resolution of the grid, the queries can be
evaluated incrementally and in parts. Therefore, we perform
the computation for all queries at the same time by main-
taining a partial sum for each target point and accessing the



data sequentially. This makes memory accesses coherent in
all levels of the cache hierarchy, regardless of the cache line
size. Sequential access patterns use the full parallelism of
the memory hardware, avoid associativity or bank conflicts,
and make processor, I/O, and database prefetching effec-
tive. Most importantly, I/O streaming reduces the overall
I/O requirements. Batches of concurrent queries share I/O;
a single value from the database contributes to all queries
for which the kernel of computation contains the point.

Evaluating by partial sums supports distributed evalu-
ation and eliminates the need for data replication among
database nodes. Previous approaches have replicated a ker-
nel half-width at the boundaries of a partition in order to
avoid transferring data among nodes (Section 2). When a
computation kernel spans data partitions, the Turbulence
Database Cluster mediator splits a single query into two
or more partial-sum queries to the multiple database nodes
and combines the results. Distributing queries has minimal
performance overhead and reclaims the 42% space used for
replicated data that localized queries to single nodes [10]. It
also supports arbitrarily large kernels; replication restricted
us to 8th order Lagrange interpolation previously.

I/O streaming and evaluating by partial-sums applies to a
broad class of decomposable functions in the realm of data-
intensive science. This includes all computations that are
expressed as a linear combination of the data samples, such
as differentiation, integration, and filtering. We have imple-
mented I/O streaming and distributed evaluation in the sec-
ond generation Turbulence Database Cluster. This database
stores the output of a magneto-hydrodynamic astrophysics
simulation, requiring 40 TB of storage. We have evaluated
our technique on user workload traces from the JHU Tur-
bulence Database Cluster. We have realized a speedup of at
least 6 times and up to 50 times in the overall performance
of queries that compute Lagrange interpolation when com-
pared with a direct method of evaluation. Since Lagrange
interpolation is the most commonly used function this trans-
lates into improved performance for scientific experiments.

2. BACKGROUND
We describe two versions of the Turbulence Database

Cluster that define the immersive turbulence approach [10]
in which we store the output of world-class, high-resolution
simulations in a database cluster and allow scientists to ex-
plore, analyze, and visualize the data through Web services.
The first version of the database hosts 27 TB of publicly-
available data from a direct-numerical simulation (DNS) of
forced isotropic turbulence over 1024 timesteps of a 10243

grid [7]. We explore some of the design flaws and limitations
of our first design, which motivated the current line of re-
search. We also discuss the magneto-hydrodynamic (MHD)
data set stored in the second version of the database that
implements I/O streaming. This second version hosts 40TB
of data representing 1024 timesteps on a 10243 grid. It is
currently available to our collaborators only as we validate
the data and test and debug functionality.

In both versions of the database, data are partitioned spa-
tially and temporally across the database cluster and are
accessed through a Web server. The Web server acts as a
mediator that divides user requests according to the spatial
partitioning of the data and submits them for execution to
the appropriate database nodes (Figure 1). Li et al. [7] and
Perlman et al. [10] describe the architecture in detail.
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Figure 1: Diagram of the JHU Turbulence Database
Cluster architecture deployed on two nodes.

Simulation data are partitioned into data cubes or“atoms”
of fixed size (represented as blobs in the database), which
are also the fundamental unit of I/O. We use blobs in order
to amortize I/O and reduce the storage overhead associated
with the generation of an index. All computations, such as
Lagrange interpolation, require a cube of data as a kernel
(512 points for 8th order interpolation). Additionally, index-
ing each individual point would nearly double the storage
requirements.

The Morton z-order space-filling curve governs the spa-
tial partitioning and organization of the data. The curve
provides the mapping of the three-dimensional data to the
linear ordering in which the atoms are laid out on disk. The
Morton z-order curve was chosen because it preserves spa-
tial locality well and the indexes are easy to compute. The
spatial access method used to store and retrieve the data
atoms to and from disk is a standard B+ tree clustered in-
dex, which is keyed with a combination of the time step and
the Morton z-curve index.

Our experience deploying the first version of the database
revealed several design errors. We stored all attributes in a
single table, which reduces I/O performance. For example,
scientists would be interested in just one of the fields (veloc-
ity or pressure). However since velocity and pressure were
stored together in the same atom data for both would be re-
trieved when each particular query was evaluated. We also
chose to replicate data on the edges of partitions in order to
localize the computation of kernels to single database nodes.
Since the highest order interpolation supported was 8th or-
der Lagrange interpolation, which has a kernel of size 83, the
required replication was 4 data points in each dimension (a
kernel half-width). This introduced ∼42% storage overhead.

The second version of the database amends these decisions
in part due to the I/O streaming techniques we develop. We
employ vertical partitioning in order to improve the speci-
ficity of reads. The MHD data set consists of 3 vector fields,
velocity, magnetic field, and magnetic vector potential, and
the scalar pressure field. These data are partitioned into 4
tables respectively, and thus when a request for a particular
field is made we only have to read the specific data instead
of all of them. This vertical partitioning is reminiscent of
column-store databases [3, 2, 13]. In order to reduce wasted
data transfer and to improve memory performance, we re-
duce the size of a data atom to 43 (768B of storage for vector
fields, e.g. storing Vx, Vy and Vz together). Small data atoms
do not pollute the cache and have small transfer times from
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Figure 2: Data requirements for Lagrange Polyno-
mial interpolation at a target point (x′, y′). A 4th

order interpolation in two dimensions (shown) ac-
cesses a square of size 4 around the target point.

disk that outweigh the potentially higher costs of more disk
seeks. Evaluating by partial-sums allows us to distribute
the computation for kernels that cross node boundaries and
work with smaller atoms eliminating the need for replication
as described in Section 3.3.

3. I/O STREAMING
We have implemented a data-driven partial-sums method

for the computation of high-order Lagrange interpolations in
the JHU Turbulence and MHD Database Clusters. We per-
form the computations by means of an I/O stream that takes
a single pass over the data. For each target point, we main-
tain a partial sum of the results that we update incremen-
tally as we access relevant data points. We also use partial
sums to implement distributed evaluation of interpolation
kernels across multiple database nodes. Each database node
executes its part of the computation and maintains a partial
sum. The mediator combines the partial sums and returns
the final result to the user.

3.1 Partial-Sums
Lagrange polynomial interpolation uses a cubic grid of

data surrounding the target point as the kernel of computa-
tion. The N th order Lagrange polynomial interpolation of
any point in space p′ is given by

f(p′) =
NX
k=1

l
q−N

2 +k
z (z′)

NX
j=1

l
p−N

2 +j
y (y′)

NX
i=1

l
n−N

2 +i
x (x′)

·f(xn−N
2 +i, yp−N

2 +j , zq−N
2 +k) (1)

in which p′ = (x′, y′, z′) is the position of the target point
in 3-dimensional space and f(xi, yj , zk) represents the data
stored at the node on the grid at location (xi, yj , zk). The
computation requires the data from an N × N × N cube
around the target point (Figure 2). The data grid location

(xn, yp, zq) is computed as n = int( x
′
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2
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2
),

q = int( z
′
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2
), where ∆x, ∆y, ∆z are the widths of the

grid in the x, y and z dimensions. The Lagrange coefficients
l are given below in which θ can be x, y or z and α can be
n, p or q, respectively.
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2Q

j=α−N
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(θ′ − θj)
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2Q

j=α−N
2 +1,j 6=i

(θi − θj)

. (2)

We observe that Equation 1 can be computed incremen-
tally and in parts. It is a linear combination of the data
values and the coefficients liθ(θ

′) and the coefficients are in-
dependent of the data values at grid nodes.

We leverage partial sums to evaluate multiple point
queries concurrently, using a single, sequential pass over
the data. For each data atom, we update all of the in-
terpolation kernels that include data from it, evaluating the
portion of the computation contributed by the data points
f(xn−N

2 +i, yp−N
2 +j , zq−N

2 +k) that are part of this atom. We

allocate space for the partial sum and compute the Lagrange
coefficients on the first data point in the kernel. Interpola-
tion queries remain active until the last data access.

We compute the Lagrange polynomial coefficients effi-
ciently based on Purser and Leslie’s procedures [11]. Purser
and Leslie observed that the values in the denominator of
Equation 2 are constant and do not depend on the coordi-
nates of the target point. Thus, the values in the denom-
inator are pre-computed and reused for the entire batch.
Also, careful coding of the formulas eliminates redundant
multiplications. These two optimizations reduce the time
complexity of the computation of the coefficients to O(N)
from O(N3). In our system, these techniques result in small
performance gains, because I/O, not computation, bounds
data-intensive workloads.

3.2 I/O Streaming
Direct approaches to the evaluation of turbulence queries

produce cache faults and perform redundant I/O, accessing
the same data multiple times. These approaches gather the
data points in the kernel of a given query in their entirety
before evaluating the interpolation function. Kernels that
span data atoms (partitions) perform multiple I/Os to col-
lect the kernel data. As many as 27 I/Os are needed for
points that span three atoms in all three dimensions. These
I/Os produce seeks in the disk system and perform incoher-
ent accesses in cache memories, making unaligned requests
for small amounts of data in each cache line. Atoms that
cover multiple kernels are read multiple times by different
queries. This results in cache misses at all levels in the hi-
erarchy, including to disk. The Morton z-order (and other
space-filling curves) cluster data well. However, no linear or-
dering of data localizes all computations, because the data
are 3-dimensional and partitioned.

Evaluating by partial-sums allows us to stream I/O, per-
forming a sequential scan of the data that reads each data
atom only once. We execute a multi-point query (or a batch
query) as follows. For each query, we create hash table en-
tries for each of the data atoms needed by the query’s in-
terpolation kernel. The hash table is keyed by the Morton
z-curve index of the data atoms and looks up the partial
sum of the query. Thus, each hash table entry contains the
list of point queries that need to be updated when reading
the corresponding data atom. We maintain a small amount
of metadata for each query in addition to the partial sum,
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Figure 3: Processing a batch query. The kernel com-
putation of each query is shown in light green. The
data atoms (blue) that are intersected by the kernel
of each query need to be accessed. The arrival order
of each atom and the query that needs data from it
is shown on the bottom, atoms in gray (10 and 13)
are not needed and are not read.

including the number of data atoms that have been read,
the total number of atoms required, and the Lagrange coef-
ficients needed for interpolation. To retrieve data, we build
a temporary table that stores the z-indexes of the needed
data atoms and perform a join between this temporary ta-
ble and the data table. The database chooses its preferred
I/O plan for this join, which always accesses the underlying
data table sequentially.

The results of this join form an I/O stream on which we
evaluate partial sums. As a data atom arrives, we perform
a hash table lookup to determine all queries that require
points within the atom and update their partial sums (Fig-
ure 3). The first time we update a partial sum for a query,
we compute the Lagrange coefficients for that target point.
We cache these coefficients for reuse on subsequent partial
sums. This is a time/space tradeoff; the coefficients could be
recomputed for every data atom were the system memory
constrained. When all of the needed data atoms have been
processed, we return the result to the mediator.

The benefits of I/O streaming come at the expense of mod-
est memory consumption. For each query, we create a hash
table entry for every data atom it accesses, typically around
20 per query. Other metadata for the queries, including
the partial sum and the Lagrange coefficients, are allocated
dynamically and only retained between the first and last
update of its partial sum. Our evaluation shows that I/O
streaming requires only tens to hundreds of megabytes of
memory.

We sort the temporary table for batches smaller than
100,000 queries and when more than 1.1 queries access each
data atom on average. In these cases, the database chooses
a nested loops join and performance improves when both
relations are sorted on the join key. Sorting larger batches
has a negative impact on query performance, because the

database chooses a sort merge join, which sorts the tempo-
rary table again.

Our final optimization performs loop unrolling to ensure
that data are accessed sequentially within each cache line.
The original direct computation of Lagrange interpolation
loops over the x then y then z dimensions for the entire ker-
nel. Because vector components are stored as tuples in row
major order, e.g. velocity is 〈Vx, Vy, Vz〉, these loops per-
form strided access to individual velocity components, which
reduces the coherency of memory access and negatively im-
pacts memory throughput. I/O streaming accesses multiple
data points in each data atom. For I/O streaming, we unroll
the vector component loop and access the data sequentially
in memory. Cache lines are consumed in their entirety and
the necessary coefficients are loaded and used only once. It-
erating in the appropriate order scans data sequentially and
eliminates random memory access.

3.3 Distributed Evaluation
Partial sums evaluation makes it possible to evaluate La-

grange interpolation queries across nodes of the database
cluster. When interpolation kernels span multiple database
nodes, each of the nodes computes the partial sum for the
data points that it stores and returns it to the mediator. The
mediator assembles the sums to complete the computation
and returns results.

We use distributed evaluation of queries to eliminate repli-
cation among database nodes. The first version of our
database was constrained to evaluating each query on a sin-
gle database node. Direct evaluation requires all of the data
to be available and we wanted to avoid the complexity of
inter-node queries. As a consequence, we replicated a kernel
half width of data around every data partition. Queries near
the boundary of the partition access data in the replicated
half width within the interpolation kernel. This resulted in a
42% storage overhead [10]. Using partial sums, we eliminate
this overhead and reclaim the storage space. Our evaluation
shows that distributed evaluation incurs little overhead.

4. EXPERIMENTS
We evaluate I/O streaming query evaluation by partial-

sums using microbenchmark workloads characteristic of user
patterns and on user query traces from the Turbulence
Database cluster. Microbenchmarks isolate the performance
benefits by query type, data sharing, and data access pat-
tern. User query traces show that I/O streaming realizes an
order of magnitude performance increase in practice.

Our evaluation compares I/O Streaming against sev-
eral other evaluation techniques that allow us to isolate the
important performance factors. These include:

• Direct: The direct method of evaluation that pro-
cesses queries in arrival order and executes a SELECT
query for each target point in order to retrieve all of
the data atoms that cover its kernel of computation.
The interpolation computation consists of nested loops
that evaluate one component of a vector field after an-
other (e.g. Vx first then Vy then Vz).

• Sorting: An improvement on Direct that also exe-
cutes a SELECT query for each target point, but sorts
the target points in Morton z-curve order before pro-
cessing them. We sort the input in Morton z-curve



order since the data atoms are organized in this order
on disk and we expect the number of disk seeks to be
reduced when reading them in this order. For the in-
terpolation computation, we implement the optimiza-
tions described in Section 3: iterating in the correct
order and evaluating the components of a vector field
at the same time. This reduces random memory access
and improves the cache locality of the computation.

• Join/Order By: A direct method that was re-
designed to make use of a join. This eliminates
the overhead of executing multiple queries and the
database query execution engine can take advantage
of efficient read-ahead and prefetching techniques. The
method uses an ORDER BY clause on the sequence
id of the input queries in order to ensure that all of the
data for a query have been read-in before performing
the Lagrange interpolation. The interpolation com-
putation is performed in the same fashion as for the
Sorting method.

All methods compute 8th order Lagrange interpolation.
The Join/Order By strategy executes a single query and
takes advantage of database read-ahead and prefetching.
Join/Order by is a substantial improvement over the query-
at-a-time evaluation of Direct and Sorting. However,
Join/Order By does not benefit from data sharing and its
performance degrades with respect to I/O streaming for
queries that are large or dense in space.

Experiments use a dedicated version of the MHD database
cluster that stores ∼300 time-steps of the velocity fields of
the MHD DNS (∼0.6 seconds of simulation time). The data
are evenly partitioned across two databases based on split-
ting the z dimension. Database nodes are 2.33 GHz dual
quad-core Windows 2003 servers with SQL Server 2008 and
8GB of memory. Data tables are striped across seven disks
on each of the nodes. We do not perform experiments on
the production version of the Turbulence Database cluster
as our results would be affected by queries run by the users
and would negatively impact scientists’ workloads.

4.1 Microbenchmarks
To define microbenchmarks, we analyzed the query logs

and selected two query patterns that are common among
users, but have differing data requirements, sharing, and
spatial extent. The 3D workload selects points distributed
randomly throughout the entire cubic volume of a specific
timestep. Users employ this query pattern to generate un-
biased global statistics. The 128 workload selects randomly
distributed points within a randomly chosen sub-volume of
size 1283. Random points within sub-volumes are useful
for particle tracking along field lines in a region of interest
and creating animations of 3-d turbulence within a mem-
ory/space budget. We vary the number of points in a batch
query between 1000 and 5 million in order to examine I/O
scalability and data sharing. Batch sizes of 100,000 or more
are typical of user workload.

Our principal finding is that I/O streaming improves the
performance of direct evaluation by an order of magnitude
over point query evaluation techniques (Direct and Sorting).
Figure 4 compares the execution time of all methods, dis-
played in log scale. Sorting improves performance by up to
a factor of two, because it generates I/O patterns that are
more sequential. However, Sorting evaluates each query one
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Figure 4: Execution time for randomly distributed
points in the entire 10243 space (3D) and in a 1283

subset of the entire space (128).

at a time and reads the same data multiple times when it
is accessed by multiple kernels, incurring cache misses. I/O
streaming reads each element only once. It never takes a
cache miss and accesses data more coherently, in storage
and memory order. This results in a further ten times per-
formance gain.

For queries without data sharing, the performance bene-
fits come from evaluating queries as joins. Join/Order By
requests the data atoms needed by each target point and ex-
ecutes the query as a single join. This is much more efficient
than the multiple selection queries used by query-at-a-time
methods. Join/Order By execution time tracks that of I/O
streaming for smaller queries in the 3D workload. Because
3D randomizes target points over the entire 10243 volume,
there is essentially no data sharing for fewer than 10,000
queries. The sort induced by the ORDER BY clause also
does not have a significant impact in those cases. Joins
allow the database query plan generator to pick the most
efficient plan for the execution of the query. For example,
for batches of up to 10,000 target points a nested loops join
with unordered prefetch is executed. For batches of 20,000
target points, a sort merge join is executed. For 50,000 and
more points, the database chooses a hash match join. At
this point, prefetching and read-ahead become very effec-
tive and we see the execution time increasing at a lower
rate. Beyond 50,000 points, the physical I/O remains more
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Figure 5: Physical and read-ahead reads of I/O
streaming (I) and the direct evaluation (D).

or less constant, because read-ahead prefetches the entire
time step.

For larger queries and queries with data sharing, I/O
streaming benefits from more effective cache usage. Each
database atom is accessed only once even if it is needed by
multiple queries. This accounts for the differences between
I/O Streaming and Join/Order By. If an atom is needed by
more than one query it will be accessed more than once due
to the ORDER BY clause in the JOIN statement, and if
the atom was evicted from the database cache it will have
to be read from disk again. In the 128 workload, even a
small number of queries share data, because the volume is
restricted. Therefore, the negative effects of accessing the
same data multiple times degrades performance for as few
as 1000 point queries.

A closer look at I/O shows that the strictly sequential ac-
cess pattern of I/O streaming makes prefetching effective,
which helps account for the large performance improvement
over direct evaluation. Figure 5 shows the aggregate I/O
statistics generated by SQL Server 2008 for the 3D queries.
Executing a single join query results in substantially fewer
physical reads (up to 500 times). Instead, the database per-
forms efficient read-ahead, which populates the cache with
data. Database reads to prefetched data are logical (cache
hits) and do not generate physical I/O. On the other hand
the direct methods evaluate queries one at a time and do
not take advantage of read-ahead. All database reads result
in physical I/O, which explains the poor performance.

Decomposing queries into their component costs reveals
that I/O streaming alleviates the I/O bottleneck for large
data-intensive turbulence queries and computation of the in-
terpolation function emerges as the most costly operation.
Figure 6 shows the breakdown of execution time into query
pre-processing, I/O, computation of the interpolation func-
tion, and transmission of query results for 3D and 128 work-
loads respectively. For 3D, the computation and I/O costs
are roughly the same at 5 million query points. When target
points become dense enough, the query reads the entire data
space (12 GB for a timestep) and I/O costs stop increasing.
The 128 workload accesses a smaller data region (25 MBs)
and computation dominates for much fewer than 1M tar-
get points. I/O streaming incurs moderate pre-processing
costs to determine the Morton z-indexes of the data atoms
required by each query and generate the hash table that
maintains them along with the partial-sums as described in
Section 3.
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(b) 128

Figure 6: Breakdown of the execution time for ran-
domly distributed points in the entire 10243 space
(3D) and a 1283 subset of the entire space (128).
For more than 106 points Direct was not executed
because the time exceeds reasonable bounds.

As computation becomes a bottleneck, efficient interpola-
tion and memory coherency become important. Rearrang-
ing and unrolling loops to reorder memory requests so that
they are sequential and pre-computing Lagrange coefficients
[11] cuts computation costs by 15% on average and as much
as 35% (Figure 7). Moreover, evaluating by partial-sums
effectively exploits the data sharing opportunities that are
available. It allows us to iterate over a data atom that is read
into memory directly without having to copy data from it
into a separate buffer. Because we do this for all queries that
need data from the particular data atom, the computation
costs are reduced up to a further 40%. We chose the size of
a data atom to be 782B so that it fits within L1 cache and
all partial sums using that data are evaluated as L1 cache
hits.

The benefits of I/O streaming come at the cost of memory
consumption to store partial results. I/O streaming requires
space for the results to be allocated when the I/O stream
encounters the first partial sum and retained until query
completion when the stream reaches the last partial sum.
Queries with interpolation kernels that span Morton z-order
partition boundaries may have to wait quite awhile.

We define the maximum memory needed by active queries
as the computation’s memory bandwidth (Figure 8). Even
the largest 3D computations use a negligible amount of
memory: 3MB for 1 million query points. Points are spread
out across the entire data space and only a small set of
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Figure 7: Computation time for interpolation com-
paring the direct method (Direct), loop unrolling
and precomputing coefficients optimizations (Opt),
and optimization plus I/O streaming data sharing
(I/O Streaming). Computation times are normal-
ized to Direct.

1 

10 

100 

1000 

10000 

1.E+02  1.E+03  1.E+04  1.E+05  1.E+06 

M
em

or
y 
Ba

nd
w
id
th
 (K

B)
 

Number of Points 

3D VOLUME 
128 CUBE 

Figure 8: Memory bandwidth of an I/O streaming
evaluation of Lagrange interpolation.

queries are active at any one time. The 128 workload has
higher memory bandwidth, because the density of query
points in small data regions means that a large fraction of
queries can be active concurrently. However, the 10+ MBs
needed for 1 million query points still fits easily within cache.
Each query uses ∼150 bytes, including 96 bytes of cached co-
efficients for the Lagrange interpolation. To save space, the
coefficients could be recalculated for each partial sum, but
that is unnecessary given the small memory consumption in
practice.

4.2 User Workload
We perform a similar evaluation on workload gathered

from the usage log of the Turbulence Database cluster. The
workload was chosen from a representative 10 day period be-
ginning 05/21/2009. Figure 9 compares the execution time
for queries of different sizes. The results are similar to the
microbenchmarks with I/O streaming performing up-to 8
times better than Join/Order By. The bump in the execu-
tion time for the batches of 900 and 1000 queries is due to
the fact that target points in these queries were distributed
randomly in the entire space, whereas for most of the other
queries the target points were densely clustered together.

Figure 10 shows the amount of data sharing as the average
number of queries per atom for the user workload. The cor-
relation between available data sharing and execution time
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Figure 9: Execution time for queries derived from
the usage log of the Turbulence Database cluster.
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Figure 10: Amount of available data sharing for
batch queries derived from the usage log of the
Turbulence Database cluster (computed as average
number of queries per atom for each batch query).

is evident as less data sharing leads to larger execution times
and more data sharing to smaller execution times.

Figure 11 shows the time to perform the Lagrange inter-
polation computation on the user workload. The result is
consistent with the microbenchmark evaluation. The opti-
mized version of the computation reduces the time by ∼15%
and the I/O streaming reduces this by a further 40% on av-
erage. This result is more closely aligned with the results
presented for the 128 workload as opposed to the 3D work-
load. This is due to the fact that most of the user queries
were densely clustered in a small region of space, as is the
case in the 128 workload.

4.3 Distributed Evaluation
Partial sums computation of Lagrange interpolation elim-

inates the need to localize each computation to an individ-
ual database node, which reclaims the 42% storage over-
head of replicating an overlapping data region along parti-
tion boundaries. Instead, partial sums are used to perform
distributed evaluation on multiple nodes, evaluating multi-
ple partitions of the Lagrange interpolation kernel on dif-
ferent databases and combining their contributions on the
mediator. This incurs some runtime overhead, because the
mediator performs additional computation.
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rived from the usage log of the Turbulence database.
Computation times are normalized to Direct.

A microbenchmark experiment shows the overhead of dis-
tributed evaluation to be about 2%. We configure a clus-
ter of eight virtual database nodes deployed on the two
node experimental cluster. We compare two configura-
tions: one that stores an entire timestep on a single node
(no distributed evaluation) and the other that divides each
timestep into eight partitions by splitting each dimension in
two. We then query a 2-d plane across the middle of the
timestep on a warm cache, which takes 2% longer on av-
erage in the distributed case (Figure 12). The warm cache
is necessary to reveal the performance difference, otherwise
I/O costs dominate. This particular 2-d query has poor dis-
tribution performance, because the interpolation kernel of
every target point spans 2, 4, or 8 partitions. We conclude
that distribution overheads are negligible.

5. RELATED WORK
Batch Processing: Data-intensive computing relies

on the workload properties of batch computations to re-
alize high-throughput. This is a fundamental tenet of
Map/Reduce frameworks [20], which encapsulates computa-
tion and data access patterns in the functional abstractions
of map and reduce. Shared scans between jobs that access
the same files improve the I/O performance of map/reduce
[1]. The same principles have been applied in databases
[17, 18] that merge queries that share data. All-Pairs [8]
and Wavefront [22] use declarative abstractions to comput-
ing functions over set combinations and in recurrences re-
spectively. Programs in these abstractions are parallelized
automatically and data and computation are placed to min-
imize I/O. These systems optimize I/O across multiple jobs
based on co-scheduling jobs that share data. I/O stream-
ing operates at a finer granularity within a single job, re-
formulating overlapping kernel queries as a single join and
processing data in a strictly sequential fashion.

Paradise [23] uses query batching to execute multiple
queries that access tape-resident data. Queries are grouped
into batches based on the tapes that they access and re-
ordered in order to perform sequential I/O in a pre-execution
step. Our I/O streaming evaluation also consumes data in
the order in which they arrive and has the additional ben-
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Figure 12: Performance of local and distributed
computation of partial sums. (Normalized to local
execution time).

efit that it does not impose any restriction on this arrival
order. In contrast to query batching in the Paradise system,
data do not have to be buffered and are consumed immedi-
ately upon retrieval. This lowers the memory consumption
significantly and does not pollute caches with buffered data.

Crescando [16] executes multiple queries and updates (op-
erations) by means of a join over sets of operations and a
table. We adopt a similar strategy in pre-processing queries
into a temporary table and joining the temporary table
against a data table. We extend their model by performing
the computation in parts because each query point requires
multiple data items for completion.

Stream Processing: Scientific applications have been
mapped to stream processors that are required to process
data sequentially [5, 21]. Yang et al. [21] extract the inter-
dependence of arrays and loops and perform optimizations
that include coarse-grained program transformations (loop
reordering and fusion, unifying arrays) and fine-grained pro-
gram transformations (reordering computation and data in-
side loops). Our streaming approach extends to I/O as well
as computation and applies to more complex overlapping
kernel functions.

Romein et al. [12] present a software approach to process
streaming telescope data on a supercomputer. They reduce
the number of memory references during the correlation of
signals by keeping correlations in registers and reusing the
samples. This exploits the data sharing opportunities that
arise during the computation similar to I/O streaming.

Querying Continuous Functions: Extensions to SQL
[9] and an algebra for scientific data sets [19] have proposed
integrated interpolation, including query optimization. I/O
streaming is a promising technique for evaluating such in-
terpolation procedures were the extensions adopted.

MauveDB [4] defines model-based views that represent
sparse and irregular raw data as a “uniform grid-based ap-
proximation.” They also discuss interpolation-based views
in which the values at target points are a function of neigh-
bors. Grumbach et al. [6] develop a query language that
extends the standard relational framework to include inter-
polation. FunctionDB [15] defines a query language and
algebraic query processor for the creation and querying of
function views, interfaces to continuous functions based on
regression. None of these works focus on batch queries.



6. CONCLUSIONS AND FUTURE WORK
We present an I/O streaming technique for the evalua-

tion of data-intensive workloads that consist of decompos-
able kernel computations. Example functions include dif-
ferentiation, integration, and filtering, but we focus on La-
grange interpolation, which is used by 95% of queries to the
Turbulence Database Cluster. Users submit multiple point
queries to be executed in a batch. I/O streaming computes
the entire batch in a single, sequential pass over the data by
maintaining a partial sum of the result for each point. The
partial sum of a query is updated whenever the I/O stream
produces data within the point’s kernel. When compared
with direct methods of computation of interpolation, I/O
streaming performs an order of magnitude faster.

The single I/O streaming pass over the data improves
cache locality and reuse at all levels of the memory hierar-
chy. The method takes advantage of the efficient execution
of joins in modern database systems. It makes full use of
read-ahead and prefetching and accesses data sequentially in
memory and on disk. I/O streaming exploits the data shar-
ing opportunities that arise during the evaluation of multiple
queries and achieves execution times that increase at lower
rates for large batches of points and batches whose points
are densely clustered.

The focus of this work has been the optimization of a sin-
gle job containing a batch of target points. We require the
single job so that we can represent the batch as a join and
preprocess the kernels to order the data access and iden-
tify data sharing among kernels. However, data sharing also
exists among multiple unrelated jobs that can be leveraged
to reduce I/O and improve throughput for map/reduce sys-
tems [1], scientific databases [17], and even specifically in
the Turbulence Database Cluster [18]. Turbulence work-
loads often have multiple jobs that analyze overlapping sets
of timesteps and could share I/O, i.e. read the data once
for all jobs. The job-aware workload scheduler (JAWS) [18]
detects this sharing and co-schedules jobs and timesteps.
However, JAWS does not manipulate query scheduling and
I/O ordering at a fine granularity and realizes much more
modest performance benefits than does I/O streaming. We
are currently investigating how to integrate partial sums,
I/O streaming, and distributed evaluation into a multi-job
scheduling framework, such as JAWS for turbulence data
and shared-scans for Map/Reduce [1].
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