The Turbulence Database
We created an environment for large-scale turbulence simulations that uses a cluster of database nodes to store the complete space-time history of fluid velocities. This allows for rapid access to high resolution data that were traditionally too large to store and too computationally expensive to produce on demand. We perform the actual experimental analysis inside the database nodes, which allows for data-intensive computations across a large number of nodes with little network traffic.

We currently have a limited-scale prototype system running turbulence simulations and are in the process of establishing a production cluster with high-resolution data. We allow jobs to be submitted through a Web service for computation on the cluster enabling one to track particles at home.

Evolving Direct Numerical Simulation (DNS) Studies
Current Methods
- Traditional cluster-based simulation
- Only a few time steps are stored
- Designed to be sequential, limited flexibility for exploration

Space-Time Histories
- Simple computations over large quantity of data
- Temporal Search
- Creates some restrictions on techniques
 - DB model is poorly suited for all-space FFTs

Data Organization

Dataset
- Regular and discrete physical-space mesh
 - Velocity (V_x,V_y,V_z) and pressure for all space-time coordinates
- Current database
 - $64^3 \times 1000$ steps and $512^3 \times 100$ steps
 - Segmented into 32- or 64-sided 3-d cubes
 - Index by (time,location)
- Target 100TB database
 - $1024^3 \times 1000$ generated at JHU
 - $8192^3 \times 1000$ generated at LANL

Overlapping Edge
- Velocities are interpolated over a kernel
 - Currently 6^3 for particle tracking
- Block size is $(n+3)^3$ for each n^3
 - Every point within a cube can be interpolated from local data, avoiding DB to DB interactions
 - Modest storage overhead (~30% at 64^3)

Hierarchical Indexing
- Bit-interleaved addressing over entire space
- Segmented addressing
 - High bits: server selection
 - Middle bits: used for index in database
 - Low bits: range queries within data

Data Exploration

Particle Tracking
- Study the evolution of turbulent structure
 - e.g. vortex tubes and current sheets
- Database allows efficient study of pre-history
- Enables data exploration
 - Iterate back and forth in time
 - Search for structures
 - Dynamic search criteria

Overlapping Edge
\[
\delta_{x}\tau u(x, t) = u(x + \xi, t + \tau) - u(x, t)
\]
- "Exotic" diffusion
 - Statistics on velocity field over arbitrary temporal and spatial ranges
 - Implications for skewness and non-Gaussian effects
- Requires the complete space-time history for large values of t

Spatio-Temporal Analysis

Funded by NSF AST-0428325

Eric Perlman and Randal Burns
Johns Hopkins University
{eric, randal}@cs.jhu.edu
http://hssl.cs.jhu.edu/