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Abstract

The output from a direct numerical simulation (DNS) of turbulent channel flow at Reτ ≈ 1000 is

used to construct a publicly and Web-services accessible, spatio-temporal database for this flow. The

simulated channel has a size of 8πh × 2h × 3πh, where h is the channel half-height. Data are stored at

2048×512×1536 spatial grid points for a total of 4000 time samples every 5 time steps of the DNS. These

cover an entire channel flow-through time, i.e. the time it takes to traverse the entire channel length

8πh at the mean velocity of the bulk flow. Users can access the database through an interface that is

based on the Web-services model and perform numerical experiments on the slightly over 100 terabytes

(TB) DNS data on their remote platforms, such as laptops or local desktops. Additional technical details

about the pressure calculation, database interpolation and differentiation tools are provided in several

appendices. As a sample application of the channel flow database, we use it to conduct an a-priori test

of a recently introduced integral wall model for Large Eddy Simulation of wall-bounded turbulent flow.

The results are compared with those of the equilibrium wall model, showing the strengths of the integral

wall model as compared to the equilibrium model.

1 Introduction

Direct numerical simulation (DNS) of turbulent flows at ever higher Reynolds number has become feasible

[1–4] thanks to the rapid expansion of high performance computing infrastructures. Still, community ac-

cess to the large datasets that typically arise from DNS poses a challenge.Publicly accessible DNS-derived

databases of turbulence fields [5–12] have demonstrated the benefits of sharing DNS-generated field data to

the turbulence research community, in addition to the sharing of turbulence statistics as is done e.g. in Refs.

[13–16]. The database approach can provide easy access and help in translating vast DNS data into mean-

ingful knowledge. In particular, Web-services equipped databases for DNS have been developed in recent

years [5, 6, 17–19]. The Johns Hopkins Turbulence Databases (JHTDB, at http://turbulence.pha.jhu.edu)

has been providing public access to large scale DNS data of isotropic homogeneous turbulence [6, 20] at

Taylor-scale Reynolds number Reλ ≈ 430 and forced MHD turbulence at Reλ ≈ 170 [21] through a specially

adapted web services interface. Subroutine-like tools (getfunctions) are provided such as getVelocityAnd-

Pressure, getVelocityGradient, getPressureLaplacian, etc. [6] and users can perform numerical experiments

on multiple terabyte datasets from platforms such as laptops using familiar programming languages (C,

Fortran, Matlab, and Python). Since its inception, JHTDB has facilitated a number of research tasks. In

order to give an idea of the range of possible applications of such databases, we point out that users have

leveraged the database in studies of extreme events [22] and shape evolution [23] in turbulence, in the study

of particles-turbulence interactions [24], turbulent dispersion [21, 25–27], for calibration of experimental tech-

niques [28–32], for the study of gradient tensor properties [33–40], subgrid-scale model assessments [41, 42]

and many others [18, 19, 43–55].
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In this paper we describe the addition of a large-scale DNS of turbulent channel flow to JHTDB. The

channel flow DNS is conducted at a friction velocity-based Reynolds number of Reτ ≈ 1000, and velocity

and pressure fields of a whole flow-through time of size ≈ 100 TB are stored. The data volume of each

time-step is subdivided into small chunks or database atoms, which are temporally and spatially indexed

and stored in a SQL Server database. Detailed description of the database layout and temporal and spatial

partitioning of the data is provided in Kanov et al. [17] and the supplementary material of Eyink et al. [21].

The databases storing the data occupy several of the nodes of the DataScope cluster at JHU [56].

The organization of the article is as follows. We first discuss the DNS flow parameters in section 2.

Since the pressure had to be computed separately for ingestion into the database, some details about the

pressure calculation are also presented. Additional information concerning the usage of the database and

the generation of the DNS data is included in appendices. Then, as a sample application we use the data

to conduct an a-priori test of a new wall model for Large Eddy Simulations (LES), the integral wall model

(iWMLES) introduced in [57], and compare it to a traditional equilibrium wall model.

2 DNS approach and simulation parameters

The data are obtained from a direct numerical simulation (DNS) of fully developed wall-bounded channel

flow with periodic boundary conditions in the longitudinal (x) and transverse (z) directions, and no-slip

conditions at the top and bottom walls (y/h = ±1, where h is the half-channel height). The simulation is

performed using the petascale DNS channel flow code PoongBack [58]. The code solves the incompressible

Navier-Stokes equations using a wall–normal, velocity–vorticity formulation [59]. This formulation uses a

vertical velocity and vorticity representation by which the pressure calculation is eliminated and continuity is

explicitly satisfied. The benefit of this approach is that the need for specifying the correct pressure boundary

condition is avoided, especially when explicit time integration is used. The governing equations are solved

using a Fourier-Galerkin pseudo-spectral method for the longitudinal and transverse directions. A seventh-

order Basis-splines (B-splines) collocation method is used to discretize in the wall normal direction (see

Appendix A for more information). Dealiasing is performed using the 3/2-rule [60]. Temporal integration is

performed using a low-storage, third-order Runge-Kutta method. In order to increase the time-step without

violating the CFL condition, the Navier-Stokes equations are solved in a frame of reference moving in the

+x direction at a speed of 0.45Ub, where Ub is the bulk channel mean velocity. In this frame, the Dirichlet

boundary condition used for the streamwise velocity at the wall is u(y/h = ±1) = −0.45Ub while the other

components still vanish.

Initially, the flow is driven using a constant volume flux control (imposing Ub in the wall-attached frame of

reference, or 0.55Ub in the moving frame of the simulation) until stationary conditions are reached. Then the

control is changed to a constant applied mean pressure gradient forcing term equivalent to the time-averaged

shear stress resulting from the prior steps. Additional iterations, amounting to four flow-through times, are

then performed to further achieve statistical stationarity before outputting velocity and pressure fields for

ingestion into the database. Before ingesting to the database, the simulation frame velocity of 0.45Ub is

added to the streamwise component, although the grid-points at which data are stored are those moving at

speed 0.45Ub, i.e the x-coordinate of grid points obeys x = x0 + 0.45Ubt, where t is the elapsed time.

The DNS parameters are shown in Table 2. The simulation is well resolved, as the mesh is designed

using standard resolution heuristics for wall-bounded simulations [61]. In particular, the x and z-directions,

∆x+ ≈ 13, ∆z+ ≈ 7. The y-direction uses a non-uniform mesh, with the first point at ∆y+ < 1, and

∆y+ ≈ ∆z+ towards the center of the channel (a detailed listing is provided in the next section). A recent

study [62] found that meshes generated conforming with these criterion result in discretization errors that

are quite small. This indicates that the commonly used heuristics should provide adequate resolution for a

well-resolved simulation.

In order to obtain the pressure field for the database, the pressure solver was implemented in the Poong-
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Simulation Parameters Values
Domain Length (Lx × Ly × Lz) 8πh× 2h× 3πh
Grid (Nx ×Ny ×Nz) 2048× 512× 1536 (wavemodes, also database spatial resolution)

3072× 512× 2304 (collocation points, for the 3/2 dealiasing step)
Viscosity ν = 5× 10−5Ubh
Mean pressure gradient dP/dx = 0.0025U2

b /h
DNS Time step ∆t = 0.0013h/Ub
Database time step δt = 0.0065h/Ub
Time stored t = [0, 26]h/Ub

Table 1: Simulation parameters in units used in the simulation. There are more collocation points than
wave modes in the x and z directions due to the use of the 3/2-dealiasing. Data is stored in physical space
without the zero-padding, i.e. on 2048× 512× 1536 grid-points.

Back code. One solves the pressure Poisson equation

∇2p = −∇ · [∇ · (u⊗ u)] (1)

where p is the pressure divided by density, and u the velocity. The Neumann boundary condition, expressed

as [
∂p

∂y
− ν ∂

2v

∂y2

]
wall

= 0 (2)

where ν is the molecular kinematic viscosity and v the wall-normal velocity component, is used at the top

and bottom walls (y/h = ±1). This calculation is performed independently from the velocity field solution

only when outputting fields. The implementation and testing of the pressure solver is discussed in more

detail in Appendix B.

3 Flow properties and database content

After reaching statistically stationary conditions, the simulation is continued for approximately one flow-

through time. The 3 component velocity vector and pressure fields are stored every 5 time steps, resulting

in 4000 frames of data. Information regarding the resulting statistical quantities are listed in table 3 and the

effective resolution is indicated in Table 3. Note that the averaging operation for mean and other statistical

quantities is applied in time between t = 0 and t = 26, and over x–z planes.

Statistics Values
Bulk velocity (Ub) 0.99994
Centerline velocity (Uc) 1.1312
Friction velocity (uτ ) 4.9968× 10−2

Viscous length scale (δν = ν/uτ ) 1.0006× 10−3

Bulk velocity Reynolds number (Reb = Ub2h/ν) 3.9998× 104

Centerline Reynolds number (Rec = Uch/ν) 2.2625× 104

Friction velocity Reynolds number (Reτ = uτh/ν) 9.9935× 102

Table 2: Flow statistics averaged over t = [0, 26]. Values are in units used in the simulation.

Grid Spacing Values
x direction (∆x+) 12.2639
y direction at first point (∆y+1 ) 1.65199× 10−2

y direction at center (∆y+c ) 6.15507
z direction (∆z+) 6.13196

Table 3: Collocation grid spacing in viscous units.

In the following figures several basic flow characteristics are presented. In Figure 1 the friction Reynolds
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number is shown as a function of simulation time, indicating statistical stationarity near the nominal value

Reτ ≈ 1000.

Figure 1: Friction velocity Reynolds number during the channel flow simulation during the time interval
available in the database.

Figure 2 shows the mean velocity profiles for the current DNS (solid red line) and Ref. [2] (dashed red

line), together with the standard U+ = y+ profile in the viscous sublayer and the log-layer with parameters

κ = 0.4 and B = 5 (black dashed lines), which are in the commonly accepted range. It is readily apparent that

the mean velocity profiles agree markedly well. The viscous and turbulent shear stresses, Reynolds normal

stresses, mean pressure, pressure variance, and velocity–pressure covariances are shown in Figures 3(a)–3(d).

The Reynolds stresses and pressure variance for the current DNS (solid lines) are plotted along with those

from Ref. [2] (dashed lines). Minor differences between the second-order moments can be attributed to the

slightly different Reynolds numbers of both DNS.

Figure 2: Mean velocity profiles in viscous units for the current DNS and Hoyas and Jiménez (2006) at
Reτ = 934 [2]. Standard values of κ = 0.4 and B = 5 are used in the log-law (black dashed line) for
reference.

In the remaining plots, we show power spectral densities of velocity and pressure are presented for various

y+ locations, in order to clearly demonstrate that the simulations are spatially well resolved, i.e. that at high
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(a) Mean viscous, turbulent, and total shear stress
normalized by the wall stress for the current DNS.
Dashed line has slope of -1.

(b) Velocity covariances in viscous units for the cur-
rent DNS and Hoyas and Jiménez (2006) at Reτ =
934 [2].

(c) Mean pressure profile in viscous units for the cur-
rent DNS.

(d) Pressure variance and pressure-velocity covari-
ance in viscous units for the current DNS and pres-
sure variance of Hoyas and Jiménez (2006) at Reτ =
934 [2].

Figure 3: Profiles of statistical quantities from the channel flow DNS.

5



wavenumbers the spectra decay sufficiently fast and smoothly. Streamwise spectra are shown in Figure 4,

whereas spanwise spectra are shown in Figure 5. Similarly to Figures 2 and 3(a)–3(d), the plots in Figures 4–5

also agree very well with prior published profiles, e.g. those in provided by Ref. [9].

The fields (3 velocity components and pressure) are ingested into the JHTDB following similar approach

as for the isotropic turbulence datasets [6], namely indexing according to the Z-index. In a previous imple-

mentation [6] data were subdivided into data atoms consisting of 643 grid points with 4 additional points on

all sides for edge replication, thus leading to 723 point data atoms. Subsequent analysis of actual database

usage has shown that 83-point atoms without edge replication is in general more efficient. Therefore, all

datasets now included in the JHTDB use 83-point data atoms including the channel flow dataset.

Appendix C describes the interpolation and differentiation formulae provided by the system. The meth-

ods described in [6] were adapted for the non-uniform, non-periodic grid in the wall-normal direction. In

addition, spline interpolations are also implemented, to provide smooth interpolants for the applications

where continuity of derivatives is desired.

4 Sample Application to testing a new wall model

In this section we use the channel flow database to conduct an a-priori test of an integral wall model for

Large Eddy Simulations (the iWMLES model), that has been recently proposed in another paper [57]. This

wall model is briefly summarized here for the convenience of discussion, while for general reviews on wall

modeling for LES, see [63, 64]. The new iWMLES model aims to model the wall stress given information

about the flow away from the wall so that near-wall resolution can be relaxed during LES. iWMLES adopts

the classical integral method of von Karman and Pohlhausen (VKP) [65] in which a velocity profile with

various parameters is assumed. This assumption replaces numerical integration of the Reynolds-averaged

boundary layer equations in the near-wall zone as is commonly done in zonal or hybrid wall models. The

method also shares several features with the integral method proposed in Chung & Pullin [66].

The proposed velocity profile to be used in iWMLES contains a viscous or roughness sub-layer, and a

logarithmic layer. The latter is augmented with a linear term to account for inertial and pressure gradient

effects. Similar to the VKP method, the assumed velocity profile coefficients must be determined from

matching and consistency conditions and then wall-normal integrals may be done analytically. The assumed

functional form is for the filtered velocity 〈u〉. In order to justify the assumed profile as a possible class of

solutions to the Reynolds-averaged (RANS) boundary layer equations, 〈u〉 must be thought of as a spatially

filtered velocity, filtered at the LES spatial resolution in horizontal directions. In addition a temporal filter

must be applied over an averaging time-scale Twall, in order to damp out any fast fluctuations and allow

turbulent or viscous diffusive processes to propagate towards the wall. Only then can a RANS type model be

invoked and a boundary layer profiles assumed. We envision a situation in which LES is performed using a

grid-spacing on the order of ∆y, and that we therefore know from LES the wall-parallel velocity at a distance

y = ∆y away from the wall. The iWMLES model involves an assumed profile with a two-layer form:

〈u〉 = uν
y

δν
, 0 ≤ y ≤ δi,

〈u〉 = uτ

[
C +

1

κ
log

y

∆y

]
+ uτA

y

∆y
, δi < y ≤ ∆y.

(3)

where 〈u〉 is the assumed profile for the filtered velocity as function of y, the wall normal direction. ∆y is

the distance from the wall where the velocity is assumed to be available if one were to perform an LES with

the first vertical grid point located at a distance ∆y away from the wall. Also, δi is the inner layer height,

and uν and δν are the “inner layer” velocity and length scales, respectively. uτ is the velocity scale for the

“meso layer”. A is the coefficient of the linear correction term and C is the constant from the log law. We

restrict the discussion to 1-D for simplicity, i.e. we do not include the spanwise velocity 〈w〉 component in the

discussion. Then the 6 unknown parameters, uν , δν , δi, uτ , C and A, must be determined from the local flow

conditions through additional conditions and constraints. 5 such constraints can be easily stated. Moreover,
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(a) y+ = 10.11 (b) y+ = 29.89

(c) y+ = 99.75 (d) y+ = 371.6

(e) y+ = 999.7

Figure 4: Streamwise power spectral densities at various y+ locations as function of kx
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(a) y+ = 10.11 (b) y+ = 29.89

(c) y+ = 99.75 (d) y+ = 371.6

(e) y+ = 999.7

Figure 5: Spanwise power spectral densities at various y+ locations as function of kz
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as is in VKP method, the profile shape function is substituted into the vertically integrated momentum

equation, which provides the 6th condition to fully determine the 6 parameters as function of the local flow

conditions.

We briefly discuss the 6 conditions, more details can be found in Ref. [57]. u2τ is the overall momentum

loss through the wall, and uν is momentum loss due to viscous effects. Since in this application the channel

surface is smooth, we have uτ = uν . The overall momentum loss u2τ should be consistent with ν∂u/∂y|y=0.

With this constraint, we can express in this case δν via uτ , obtaining δν = ν/uτ (this is not generally valid

for the case of rough walls). The height of inner layer δi is set to be 11ν/uτ , which is the intercept between

the linear viscous profile 〈u〉 = yu2τ/ν and the standard log-law 〈u〉 = uτ/κ ln(yuτ/ν) + B with B = 5 and

κ = 0.4. In the case that we find that 11ν/uτ > ∆y we would conclude that we have a wall resolving

situation. Then a linear profile is used from y = 0 to y = ∆y, with no “meso-layer”. We also must use the

condition of velocity matching at ∆y, i.e. matching the assumed profile with the velocity available from the

LES, ULES , and impose velocity continuity at y = δi. We can use those two conditions to express C, A in

terms of uτ . Finally, uν , δν , C, A, δi all can be expressed via uτ as follows:

uν = uτ ,

δν =
ν

uτ
,

δi = 11
ν

uτ
, (4)

A =

(
1− 11

ν

uτ∆y

)−1 [
1

κ
log

(
11

ν

uτ∆y

)
+
ULES
uτ

− 11

]
C =

ULES
uτ

−A.

The assumed profile with these parameters (that still depend on the unknown uτ ) is substituted into the

momentum equation that will be integrated in the vertical direction, to solve for uτ . A vertical, wall-normal

integral of the momentum equation is also used in the wall model of Chung & Pullin [66]. The momentum

equation reads, in forward Euler time-discretized form, as follows:

Ln+1
x − Lnx
dt

+Mn
x = τn∆y − τ

n
w, (5)

where Lx =
∫∆y
0
〈u〉 dy, Mx contains the vertically integrated convective term and pressure gradient term

(see below), τ∆y , τw are the momentum flux at y = ∆y and at the wall respectively. The time step size is

dt. The superscript denotes the time step. All information is assumed to be known at step n. In iWMLES,

the wall stress is calculated for step n+ 1 and fed back to LES.

The term Mx is defined according to:

Mx =
1

ρ

∂〈p〉LES
∂x

∆y +

[
∂Lxx
∂x

− ULES
(
∂Lx
∂x

)]
(6)

where Lxx =
∫∆y
0
〈u〉2 dy =

∫ δi
0
〈u〉2 dy +

∫∆y
δi
〈u〉2 dy. Thus, Lx and Lxx (and thus Mx) and τ∆y can all be

calculated analytically from the assumed velocity profile.

Since the wall model is intended to be applied in the context of LES, we first filter the DNS data to

typical LES resolution. Data are extracted from the database using the cutout service, in which users can

specify indices of data to be extracted. Then, spatial filtering is performed outside of the database, namely

in horizontal x − z planes. We use two filtering kernels, i.e. the Gaussian kernel and the tophat filtering

kernel. The assumed resolution of the LES is ∆x ≈ 0.2h, ∆z ≈ 0.1h and we assume the first grid point away

from the wall in LES is located at ∆y = 0.1h (i.e. assuming LES has 20 grid points to resolve the channel

height of 2h). In other words, in the a-priori analysis, we use filtering at scales ∆x+ = 192, ∆+
z = 97 and ∆y

is set to be 0.1. On the grid, it turns out that 75 grid points are used in DNS to resolve the layer between
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Figure 6: Contour plots of u at y = ∆y (taking y = 0 to be the wall) for the unfiltered DNS, Gaussian
filtered, and tophat filtered fields. The horizontal filtering is done at ∆x+ = 192 (or ∆x ≈ 2∆y), ∆+

z = 97
(or ∆z ≈ ∆y). The resolution of original DNS is ∆x+ = 12, ∆+

z = 6.

the wall at y = 0 and y = ∆y. Figure 6 shows a contour plot of u at y = ∆y from the unfiltered DNS data,

the Gaussian filtered field, and the tophat filtered field. Barely any difference is visible between the tophat

filtered field and Gaussian filtered field.

To test the performance of the integral wall model, we must in addition perform time averaging. As in

the practical implementations of iWMLES, temporal filtering over the time scale Twall = ∆y/κuτ is applied

to the velocity field using a one-sided exponential filter:

Un+1
LES = UnLES

(
1− ∆t

Twall

)
+ ũn

∆t

Twall
, (7)

where ũn is the spatially filtered DNS velocity at time step n, and ∆t is the simulation time step size

(database timestep δt in the analysis of the database fields). A similar filtering is performed to obtain the

pressure gradient from LES, ∂pn+1
LES/∂x. For time n, we also obtain uτ directly from the DNS by spatially

and temporally filtering ν∂u/∂y|y=0. Then we calculate uν , δν , δi, C, A using Eq.(4), with the uτ obtained

from the filtered velocity field at time-step n. Then, using the new Un+1
LES and ∂pn+1

LES/∂x, and the integrated

momentum equation, we can solve for uν , δν , δi, C, A and uτ at the next time-step n + 1. This stress can

then be compared to the wall stress at time n+ 1, which is also determined from the DNS.

Because the model is active in predicting the temporal change in the wall stress and we are using the

exact DNS stress at the prior time step n, we compare the time-derivative rather than the stress itself. In

figure 7, we compare the time derivative of the wall stress obtained from the integral wall model and from

DNS.

We also provide comparison with the predictions of the equilibrium wall model, which assumes instead

that the log-law holds instantaneously and locally. For the equilibrium wall model, the wall stress is obtained

simply by solving:

Un+1
LES

uτ
=

1

κ
log

(
∆yuτ
ν

)
+B (8)
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to determine uτ (and thus τw). While in practice this model would be applied locally, to provide a meaningful

comparison with iWMLES that only attempts to model the ‘low-frequency’ components of the wall stress at

time-scales longer than Twall, we also apply such time filtering when evaluating the equilibrium wall model.

Specifically, we use the time-filtered velocity ULES as input to the equilibrium model and then compare the

predicted stress (solution to Eq. 8 for uτ and thus τw) to the space and time filtered wall stress (ν∂u/∂y|y=0)

from the DNS.
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Figure 7: Scatter plots of the time derivative of the wall stress. The correlation between iWM and DNS is
0.44 for the tophat filtered flow field and 0.40 for the Gaussian filtered flow field. The correlation drops to
0.10, 0.12 for the equilibrium wall model respectively. Note the excessive range of fluctuations of predicted
wall stresses for the equilibrium wall model.

Figure 8 shows the probability distribution function of ∂τw/∂t from DNS, iWM, and the equilibrium wall

model. We observe that by taking into consideration the effects of near wall acceleration, pressure gradient,

the integral wall model can better represent the near wall physics than the equilibrium wall model. We point

out that if we compared the stresses themselves, the iWMLES model shows correlation coefficients above

99%. However, this would be misleading since the stress at time-step n+ 1 is very close to that at time-step

n, and we used the exact DNS value at time-step n. Similarly to the model of Chung & Pullin [66], the

iWMLES model makes a prediction on the rate of change of the wall stress via the integrated momentum

equation and that is what a fair a-priori test must compare in this case. Note that the PDF of ∂τw/∂t

suggests a non-zero mean value which would not be consistent with stationary statistics. This is because the

a-priori test is done only on a single snapshot.

Commenting on the resulting averaging time-scale, substituting the calculated uτ into the expression of

Twall, we found that 766 × 5 DNS time steps amounts to Twall. The time filtering is carried on until about

half a flow over time (which amounts to 2000× 5 DNS time steps) to reduce possible effects from the finite

time of the data.
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Figure 8: PDF of ∂τw/∂t from DNS, the integral wall model and the equilibrium wall model. The tophat
filtered flow field is used to generate this plot.
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We can also directly compare the assumed profile from the model with the parameters obtained from

the equations to the actual filtered profile from the DNS. We can perform the time filtering of the spatially

filtered velocity at any y at some representative x and z locations using, again,

〈u〉n+1
(y) = 〈u〉n (y)

(
1− dt

Twall

)
+ ũn(y)

dt

Twall
. (9)

Figure 9 shows a random selection of four snapshots of profiles comparing between the filtered DNS profile

and the modeled profile. As can be seen, in each case the slope at the wall (the desired stress) is well

reproduced. Also, a range of values of the parameter A is generated depending on the local time-smoothed

pressure gradient and other flow conditions.
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Figure 9: Four sample comparisons of snapshots of the spatially and temporally filtered DNS velocity
profiles near the wall and the wall modeled profile in linear-linear scale (left samples) and log-linear scale
(right samples). The red lines are modeled profile and the blue lines are filtered profile from DNS. The
coefficients A of the linear correction term and the predicted friction velocity are listed within the figure.
The units of velocity and length are as provided in the database. Vertical (at y = 0.01) and horizontal (at
u = 0.5) dashed lines are included as visual reference to better see differences between the individual plots.

Present results show that the channel flow database can be used to study wall models for LES, and that

the new integral wall model contains non-trivial physics that can lead to more accurate predictions of wall

stress evolution in wall-modeled LES.

5 Conclusions

In this paper, a new public database for turbulent channel flow is described. The database facilitates remote

public access by using Web-services, including access using familiar programming languages such as Fortran,

C or Matlab. A cutout service that enables extracting raw data (velocities and pressure) on grid points

is also provided. The new channel flow database is used to gain new insights into wall modeling for LES.

Specifically, the data are used to conduct an a-priori test of the recently proposed integral wall model for

LES. Wall stresses and their rates of change predicted from the integral wall model are compared with the

predictions of the traditional equilibrium wall model. It is seen that the iWMLES provides more accurate

predictions of the wall stress compared to the equilibrium model. The fact that the data are at high Reynolds

number enabled us to probe a significant scale separation, so that the distance to the “first LES grid point”

away from the wall ∆y was both small compared to the channel size (∆y = 0.1h) while being far from the

viscous region (∆y = 100ν/uτ ). And, the accessibility of data over an extended time period, as opposed to

only a few snapshots, enabled us to perform the time filtering that the iWMLES model calls for.

In practice, the most challenging applications of the iWMLES will not be in LES of equilibrium channel

12



flow. This flow is not the most demanding test case for a wall model since the overall mean stress will

be matched correctly to the imposed pressure gradient forcing. Even so, the a-priori tests show that slow

temporal fluctuations around the mean value are in fact captured well by the iWMLES. Within these

fluctuations, there are sometimes more favorable or adverse pressure gradients, and these modify the local

logarithmic law as characterized by the parameter Ax. Reference [57] describes a number of a-posteriori

tests of the iWMLES approach, such as flow over arrays of wall mounted cubes or truncated cones, showing

good results. Further tests in even more demanding flows such as diverging channels are desirable to probe

the ability of the model to predict separation.
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Appendix A: B-Spline collocation method

Basis splines (B-splines) are piecewise polynomials that possess special continuity properties within a given

interval (see [67] for an excellent treatise on B-splines.) The construction of B-splines begins with a given,

non-decreasing breakpoint distribution on the interval Ξ = [a, b] expressed as ~ξ = {ξi : i = 0, . . . , N}. From

the breakpoint distribution a set of B-splines which guarantee continuous derivatives everywhere in Ξ up

to order k − 1, where k is the order of the B-spline, may be constructed by properly selecting a set of knot

locations within Ξ [67, 68]. These knot locations are denoted by ~t = {ti : i = 0, . . . , N + k − 1}. The N + 1

Marsden-Schoenberg collocation points defined on Ξ are then determined as the mean location of k − 1

consecutive knots in ~t and are expressed by ~x = {xi : i = 0, . . . , N} [69]. In order to ensure Ck−1 on Ξ,

the number of B-splines required is equal to the knot number [68], i.e. n = k where n are the number of

B-splines.

For the given knot vector ~t, the n B-splines of order k are then defined according to the recurrence

relation as

Bki (x) =
x− ti
ti+k−1

Bk−1i (x) +
ti+k − x
ti+k − ti+1

Bk−1i+1 (x) (10)

where

B1
i (x) =

1 if ti ≤ x < ti+1

0 otherwise
(11)

and i = 0, . . . , n− 1. The set of B-splines form a complete basis and may be used to express a function u(x)

on Ξ as

u(x) =
n−1∑
i=0

ciB
k
i (x) (12)

where ci are the B-spline coefficients (or de Boor points [69]). For collocation methods, u will be given at
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the discrete collocation points. At these locations the field u may be written (in discrete form) as

uj =
n−1∑
i=0

ciBij (13)

and Bij = Bki (xj) is the B-spline matrix. The coefficients ci are then readily expressed as

ci =
N−1∑
j=0

B−1ij uj . (14)

where B−1ij is the inverse of the B-spline matrix from (13).

The derivatives of the field u are carried by the B-splines such that the dth derivative of u may be

expressed as

u
(d)
j =

N−1∑
i=0

ciB
(d)
ij (15)

where B
(d)
ij = B

(d),k
i (xj). Therefore, derivatives are computed by first determining the coefficients ci given

by (14). Then the derivatives are obtained by taking the inner product of the appropriate B-spline matrix

with the coefficients.

It should be noted that B-spline matrix is compactly supported over n splines (represented by the inner

index i). As a result, the B-spline matrix may be represented as a sparse, banded matrix. This feature is

especially important for the linear algebra operations needed for computing the coefficients ci in (14) and

applying the associated B-spline matrix when computing u or its derivatives.

Appendix B: Pressure solver

B.1 Solution procedure

In this Appendix, the solution procedure used in the pressure solver for the channel flow DNS is presented.

As mentioned in section 2 the pressure field is not determined during the evaluation of the velocity field.

However, it is required for computing certain turbulence quantities of interest (e.g. the pressure strain

correlation of the turbulent kinetic energy equation) and thus is desired for storage in the JHTDB. The

vertical velocity and vorticity formulation of [59] invokes the PPE given by Eq.(1). From this equation the

pressure can be solved for as a boundary-value problem with Neumann boundary conditions.

In the pressure solver, the PPE given by (1) is expressed in wavespace along the x and z directions. An

ordinary differential equation (ODE) is then solved for each kx and kz wavemode. The solution procedure

for the non-zero and zero wavemodes are discussed in the following sections.

We first apply Fourier transforms along the x and z directions to obtain the transformed PPE as(
−k2m +

d2

dy2

)
p̂ = ikxĤx + ikzĤz +

dĤy

dy
(16)

where ·̂ denotes Fourier transform, H = −∇·(u⊗ u)+F with F being the mean pressure gradient, i is the

imaginary unit, k2m = k2x + k2z with kx and kz the wave numbers along the x and z directions, respectively.

The Fourier transformed Neumann boundary condition is then expressed as[
∂p̂

∂y
− ν ∂

2v̂

∂y2

]
wall

= 0 (17)

For all but the 0 − 0 wavemode, these equations provides a second order ODE along y that may be solved

using standard techniques. The solver implemented in PoongBack uses a banded LU-decomposition approach

for the B-spline linear algebra operations.
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Now applying the B-spline representation presented in appendix 5 for p, the transformed PPE in (16)

becomes

~cp ·
(
−k2mB +B(2)

)
= R (18)

where cp are the B-spline coefficients for the pressure and Rj = (ikxĤx + ikzĤz +
dĤy
dy )j where j denotes

the index of the collocation points. The above equation may then be expressed as

cp ·L = R (19)

where Lij =
(
−k2mBij +B

(2)
ij

)
. Applying the boundary conditions given in (17), the left and right hand

side matrices become Lij = B
(1)
ij and Rj =

(
ν ∂

2v̂
∂y2

)
j

become at the top and bottom walls, i.e. y = ±h. The

pressure is then computed as

p = cp ·B (20)

where cp = L−1 ·R.

The 0 − 0 wavemode can be obtained by considering the N-S equation in vertical direction, and for

kx = kz = 0 one obtains
dp̂

dy
= Ĥy. (21)

The nonlinear term Ĥy can be written as Ĥy(y; 0, 0) = −dv̂vdy such that we can integrate (21) directly to

obtain

p̂ = −v̂v. (22)

where an arbitrary integration constant has been set to zero.

B.2 Validation

In order to test the numerical implementation of the pressure solver, two validation approaches are taken.

In the first approach, two test cases compare numerical results are against the analytical solutions of an

inhomogeneous Helmholtz equation. In these tests, the same equations are solved, but Dirichlet boundary

conditions are applied in one test and Neumann boundary conditions are applied in the other. The numerical

solutions for these tests are obtained using the pressure solution algorithm in appendix B1. Another set

of tests are performed which serve to check how well the pressure solver implicitly satisfies the Dirichlet

boundary condition while only enforcing the Neumann boundary condition in the PPE. The details of this

test are discuss below.

We first solve the inhomogenous Helmholtz equation given as(
−k2 +

d2

dy2

)
p = g(y) (23)

where g(y) and k 6= 0 are known. The boundary conditions are specified as p(−1) = c and p(1) = d. The

solution for p may be obtained by writing p as p = ph + pp where the homogeneous solution ph carries

the boundary conditions and a particular solution pp has homogenous boundary conditions. The resulting

homogeneous solution is then given as

ph = a cosh(ky) + b sinh(ky) (24)

where a = (c+ d)/(2cosh(k)) and b = (d− c)/(2sinh(k)). The particular solution may be obtained by using

an appropriate basis projection. Since the particular solution has homogeneous boundary conditions a sine

series is chosen such that

pp =
∞∑
n=1

ansin(πny) . (25)

15



The coefficients an are then obtained by inserting pp into (23) and taking the appropriate scalar product to

obtain

an = − 1

(πn)2 + k2

∫ 1

−1
g(y)sin(πny)dy . (26)

The final solution is then given as

p(y) =
c+ d

2 cosh(k)
cosh(ky) +

d− c
2 sinh(k)

sinh(ky) +
∞∑
n=1

ansin(πny) (27)

where an is given by (26).

For the second test, we solve the same inhomogeneous Helmholtz equation but in this case Neumann

boundary conditions are applied. The boundary conditions for this case are dp
dy (−1) = c and dp

dy (1) = d.

Following the same solution procedure as for the Dirichlet boundary condition case, the same particular

solution as given by (25) and (26). The homogenous solution is also given by (24), however, the coefficients

a and b are modified. The resulting final solution is given as

p(y) =
d− c

2k sinh(k)
cosh(ky) +

d+ c− 2γ

2k cosh(k)
sinh(ky) +

∞∑
n=1

ansin(πny) (28)

where an is given by (26) with

γ =
∞∑
n=1

(−1)n
πngn

(πn)2 + k2
(29)

and gn = −
∫ 1

−1 g(y)sin(πny)dy.

The two tests for the different boundary conditions were performed with g(y) = ky and c = −1 and

d = 2. The results for the Dirichlet and Neumann boundary conditions are shown in Figures 10 and 11,

respectively, for two values of k. From these plots it is readily observed that the numerical solution computes

the correct solution.

Figure 10: Comparison between the numerical (lines) and analytical solutions (symbols) of (23) with Dirichlet
boundary conditions and two values of k: a) k = 1.1180 and b) k = 18.901.

In the pressure solver, the Neumann boundary condition, as given by (17), is explicitly enforced. There is,

however, a Dirichlet boundary condition (obtained by projecting the momentum equation along the channel

wall) that may be applied that is just as valid as (17). They both cannot be enforced simultaneously however.

For this validation test the Dirichlet boundary condition is computed after the pressure field is obtained. We

then perform a posteriori checks to see how well the momentum equation along the channel wall is satisfied.
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Figure 11: Comparison between the numerical (lines) and analytical solutions (symbols) of (23) with Neu-
mann boundary conditions and two values of k: a) k = 1.1180 and b) k = 18.901.

For the tests, we use the Dirichlet condition given as:

∂p

∂τ
= ντ · ∇2u+ τ ·Π (30)

where Π is the mean pressure gradient force. We simply choose τ along the x− z diagonal resulting in

∂p

∂x
+
∂p

∂z
−Πx = ν

(
∇2u+∇2w

)
(31)

In wavespace, we write the residual for the Dirichlet condition as

R̂D =
∂p̂

∂x
+
∂p̂

∂z
− Π̂x︸ ︷︷ ︸

R̂LD

− ν
(
−k2m +

d2

dy2

)
(û+ ŵ)︸ ︷︷ ︸

R̂RD

(32)

This quantity is computed once the pressure field is obtained from the PPE. We then transform R̂LD and R̂RD
to physical space and compute to point-wise residuals. The first pointwise residual uses a local normalization

given as:

R(x, t) =
|RLD(x, t)−RRD(x, t)|

2 max
(
RLD(x, t), RRD(x, t)

) (33)

while the second uses the planar average of RLD such that:

R(x, t) =
|RLD(x, t)−RRD(x, t)|
〈|RLD(x, t)|〉xz

(34)

The PDFs for the residuals given by (33) and (34) are shown. From these results it may be concluded

that the Dirichlet boundary condition is reasonably satisfied. This is a result of correct evaluation of the

momentum equation by the PoongBack code.

Appendix C: Interpolation and differentiation methods

The JHTDB Web services provide methods for performing spatial interpolation and differentiation within

the database. Discussed in the following sections are the formulation of these methods used for the channel

flow database. For detailed information about the the subroutine-like calls that can be made from MATLAB,

Fortran, C/C++ programs and the appropriate interfaces, see Ref. [6].
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(a) Local normalization as defined by (33) (b) Mean normalization as defined by (34)

Figure 12: PDF of the PPE Dirichlet boundary condition residual with the two normalization types

C.1: Spatial interpolation

Spatial interpolation for domains with non-uninform grid spacing (e.g. the channel flow domain) is applied

using multivariate polynomial interpolation of the barycentric Lagrange form from [70]. Using this approach,

we are interested in interpolating the field f at point x′. The point x′ is known to exist within the grid

cell at location (xm, yn, zp) where (m,n, p) are the cell indices. The cell indices are obtained for the x and z

directions, which are uniformly distributed, according to

m = floor(x′/dx) (35)

p = floor(z′/dz) .

In the y direction the grid is formed by Marsden-Schoenberg collocation points which are not uniformly

distributed. Along this direction we perform a search to obtain n such that

yn ≤ y′ < yn+1 if y′ ≤ 0 (36)

yn−1 < y′ ≤ yn if y′ > 0

The cell indices are also assured to obey the following:

0 ≤ m ≤ Nx − 2

0 ≤ n ≤ Ny/2− 1 if y′ ≤ 0 (37)

Ny/2 ≤ n ≤ Ny − 1 if y′ > 0

0 ≤ p ≤ Nz − 2

where Nx, Ny, and Nz are the number of grid points along the x, y, and z directions, respectively. In the case

that x′ = xNx−1 the cell index set to be m = Nx − 2; likewise for the z direction. The interpolation stencil

contains q points in each direction for an order q interpolant (with degree q− 1). The resulting interpolated

value is expressed as:

f(x′) =

ie∑
i=is

je∑
j=js

ke∑
k=ks

lix(x′)ljy(y′)lkz (z′)f(xi, yj , zk) (38)
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where the starting and ending indices are given as

is = m− ceil(q/2) + 1

ie = is + q − 1

js =

n− ceil(q/2) + 1 + jo if n ≤ Ny/2− 1

n− floor(q/2) + jo otherwise
(39)

je = js + q − 1

ks = p− ceil(q/2) + 1

ke = ks + q − 1

and jo is the index offset for the y direction depending on the distance from the top and bottom walls. The

ceil() function ensures that stencil remains symmetric about the interpolation point when q is odd. In the

case for js, the separate treatments for the top and bottom halves of the channel is done to ensure that the

one-sided stencils remain symmetric with respect to the channel center. The value for jo may be evaluated

based upon the y cell index and the interpolation order as

jo =

max(ceil(q/2)− n− 1, 0) if n ≤ Ny/2− 1

min(Ny − n− ceil(q/2), 0) otherwise
. (40)

The interpolation weights, lx, ly, and lz, are given as

lξθ(θ
′) =

wξ
θ′−θξ∑ξe

η=ξs

wη
θ′−θη

(41)

where θ may either be x, y, or z. The barycentric weights, wξ, in (41) are given as

wξ =
1∏ξe

η=ξs,η 6=ξ θξ − θη
(42)

The weights are computed by applying a recursive update procedure as in [70]. A slightly modified version of

the algorithm in [70] is given below (Greg Eyink, personal communication, 2013):

for ξ = ξs to ξe do

wξ = 1

end for

for ξ = ξs + 1 to ξe do

for η = ξs to ξ − 1 do

wη = (θη − θξ)wη
wξ = (θξ − θη)wξ

end for

end for

for ξ = ξs to ξe do

wξ = 1/wξ

end for

To account for the periodic domain along the x and z directions we adjust the i and k indices when

referencing f in (38) such that

f(x′) =

ie∑
i=is

je∑
j=js

ke∑
k=ks

lix(x′)ljy(y′)lkz (z′)f(xi%Nx, yj , zk%Nz) (43)

and % is the modulus operator. The indices for the interpolation coefficients remain the same, however, we
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use the fact that the grid points are uniformly spaced such that (41) becomes

lξθ(θ
′) =

wξ
θ′−ξ∆θ∑ξe

η=ξs

wη
θ′−η∆θ

(44)

and similarly for the barycentric weights, (42) becomes

wξ =
1∏ξe

η=ξs,η 6=ξ(ξ − η)∆θ
(45)

for the x and z directions. The computation of the barycentric weights for the x and z directions are carried

out once (for a given interpolation order) for all grid points using (45); for the y direction the barycentric

weights are computed for each point using (42).

C.2: Spatial differentiation

Spatial differentiation for grids with non-uniform spacing is performed using the barycentric method of the

interpolating polynomial. In one dimension (assuming the x direction; the same applies for the y and z

directions), the interpolant for the field f is given as

f(x) =

ie∑
j=is

ljx(x)f(xj) . (46)

It follows that the rth derivative may be computed as

drf

dxr
(x) =

ie∑
j=is

drljx
dxr

(x)f(xj) . (47)

Within the database we compute the derivatives at the grid sites for the FD4NoInt, FD6NoInt, and

FD8NoInt differencing methods where no interpolation is performed. If a sample point is given that does

not coincide with a grid point, the derivative at the nearest grid point is computed and returned. For the

FD4Lag4 method we compute the derivatives with the FD4NoInt method (at the grid sites) and then these

data are interpolated to the interpolation point using the Lag4 interpolation method presented in §C.1.

For evaluating derivatives at the grid sites we follow the method presented in [70] such that

drf

dxr
(xi) =

ie∑
j=is

D
(r)
x,ijf(xj) . (48)

where D
(r)
x,ij =

drljx
dxr (xi) is the differentiation matrix [70]. The differentiation matrices for r = 1 and r = 2

are given, respectively, as

D
(1)
x,ij =

wj/wi
xi − xj

(49)

D
(2)
x,ij = −2

wj/wi
xi − xj

∑
k 6=i

wk/wi
xi − xk

+
1

xi − xj

 (50)

for i 6= j and

D
(r)
x,jj = −

∑
i6=j

D
(r)
x,ji (51)

when i = j for all r > 0. We note that in (50) and (51) fixes have been applied to the respective equations

presented in [70], i.e., (9.4) and (9.5). As with the interpolation schemes, the grid point locations for the

uniformly distributed directions are expressed as θξ = ξ∆θ, where θ may either be x or z.
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For second order mixed derivatives (such as for the pressure Hessian) we compute the derivatives at the

grid sites within the respective plane. When computing the mixed partials along x and y we have

d2f

dxy
(xm, yn) =

ie∑
i=is

je∑
j=js

D
(1)
x,miD

(1)
y,njf(xi, yj) . (52)

Similar formulae exist for mixed partials along x and z, and y and z.

The differencing stencil size depends on the required order of the differencing method and the derivative

order, r. In general, the resulting stencil size is determined as

q =

q′ + r for non–symmetric grid distribution about evaluation point

q′ + r − (r + 1)%2 for symmetric grid distribution about evaluation point
(53)

where q′ is the order of the differencing method. For example, to obtain a 6th order differencing method

for the first derivative of f along the x, y, and z directions, a value of q = 7 is required. For the second

derivative, the x or z directions require a value of q = 7 where the y direction requires q = 8 to achieve a

6th order differencing method.

C.3: Spline interpolation

While the Lagrange interpolation techniques provide a fast and accurate result, they have discontinuous

derivatives at grid cell faces, which is undesirable in some scenarios, for instance for the integration of

particle trajectories [71]. Therefore, high order spline interpolations were additionally implemented, in order

to provide interpolants with continuous derivatives up to desired orders. Specifically, the methods discussed

in [71, 72] were generalized to the case of nonuniform grids, and were subsequently used. In the following,

we provide a brief overview of the method, and a preliminary study of the interpolation errors.

Hermite splines Assuming that the values of a function f(x) and its derivatives are known at the points

0 and 1, the polynomial s(x) can be built, such that

s(x) =

p∑
k=0

akx
k (54)[

dls

dxl
(x) = f (l)(x)

]
x∈{0,1}

,∀l ∈ {0, 1, . . . ,m} (55)

where p is the order of the polynomial; if the linear system of equations (55) is to have a unique solution ak,

p must be equal to 2m+ 1.

From this problem a sequence of “base” polynomials can be derived, such that the expression of s(x) can

be written as follows:

s(x) =
m∑
l=0

∑
i=0,1

f (l)(i)α
(m,l)
i (x) (56)

where the α polynomials (of order p each one) have the following explicit expressions (see [72] for details):

α
(m,l)
0 (x) =

xl

l!
(1− x)m+1

m−l∑
k=0

(m+ k)!

m!k!
xk (57)

α
(m,l)
1 (x) =

(x− 1)l

l!
xm+1

m−l∑
k=0

(m+ k)!

m!k!
(1− x)k (58)
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Grid splines In [72] centered differences are used to approximate the derivatives of f , since it would be

impractical to store the derivatives of f on the grid for the general multidimensional case. A naive algorithm

is then provided to construct “grid splines”:

s(m,q)(x) =
1+n∑
i=−n

f(i)β
(m,q)
i (x) (59)

where the β polynomials can be constructed from the α polynomials and the centered difference formulae.

Also, n is the number of immediate neighbours that are needed for the computation, while q = 2n+ 2 is the

total number of points used (i.e. the stencil size). Unlike in previous work, the pair (m, q) is chosen for the

characterization of each formula, since the interest lies mainly in the smoothness m of the interpolant, and

the computational cost is mostly related to q. Note that the order p = 2m+ 1 also has an influence on the

computational cost, but this becomes less important in the multidimensional case.

This previous result is perfectly adequate for the case of periodic, uniform grids, since the coordinate

transforms are trivial. Furthermore, the β polynomials themselves owe their form to the fact that the original

function is known at points in Z. However, these results cannot be directly used for nonuniform grids, or

even for uniform grids that are not periodic.

The basis of (59) is that the β polynomials contain information about the centered differences. It is

crucial that centered differences are used, since that means that, whether we compute the interpolation in

the interval [i, i + 1] or [i + 1, i + 2], the derivatives will be approximated with the same value at the point

i + 1, therefore the derivative of the interpolant will be continuous. For the case of generic grids, it is this

constraint that must be kept: the value of the finite difference approximation used for some grid point,

embedded in the form of the polynomials used, must be the same whether we approach the grid point from

the left or from the right.

In [73, 74] a systematic way to construct all the possible finite difference formulas for a given grid is

provided. This allows the construction of specific β polynomials for individual grid points on a nonuniform,

nonperiodic grid. I.e. instead of having a number q of β polynomials for each formula, there are now on

the order of Nq, where N is the total number of grid points. Obviously, the generation and storage of these

many polynomials is only reasonable in cases when there are many different fields that must be evaluated

on the same grid.

Assume that a grid of points xi, 0 ≤ i ≤ N − 1 is given, as well as a smoothness m and a stencil size q

(thus a number of neighbours n = (q − 2)/2. This is the outline of the algorithm that is then followed for a

generic one dimensional grid to construct the β polynomials:

1. For each 0 ≤ i ≤ N − 1, construct the Fornberg coefficients δlij for the l-th derivative approximated at

the point xi, using the grid nodes νi(j), 0 ≤ j ≤ q − 1, where

(a) if the grid is periodic:

νi(0) = i− n, νi(1) = i− n+ 1, . . . , νi(q − 2) = i+ n

Note that since the distances between successive points on the grid is constant, the resulting δlij
will in fact be independent of i.

(b) otherwise:

i. case i < n:

νi(0) = 0, νi(1) = 1, . . . , νi(q − 2) = q − 2

ii. case n ≤ i < N − n:

νi(0) = i− n, νi(1) = i− n+ 1, . . . , νi(q − 2) = i+ n

iii. case N − n ≤ i:

νi(0) = N − q + 1, νi(1) = N − q + 2, . . . , νi(q − 2) = N − 1
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2. For each 0 ≤ i < N − 1, construct the corresponding sequence of β polynomials, and the sequence of

compute nodes µ:

(a) if the grid is periodic:

β0(x̃) =
m∑
l=0

(x1 − x0)−lδl00α
(m,l)
0 (x̃) (60)

βj(x̃) =
m∑
l=0

(x1 − x0)−l
[
δl0jα

(m,l)
0 (x̃) + δl0(j−1)α

(m,l)
1 (x̃)

]
,∀1 ≤ j < q − 1 (61)

βq−1(x̃) =
m∑
l=0

(x1 − x0)−lδl0(q−1)α
(m,l)
1 (x̃) (62)

µi(0) = i− n, µi(1) = i− n+ 1, . . . , µi(q − 2) = i+ n, µi(q − 1) = i+ 1 + n (63)

(b) otherwise:

i. case i < n

βij(x̃) =
m∑
l=0

(xi+1 − xi)−l
[
δlijα

(m,l)
0 (x̃) + δl(i+1)jα

(m,l)
1 (x̃)

]
,∀0 ≤ j < q − 1 (64)

µi(j) = νi(j) (65)

ii. case n ≤ i < N − n:

βi0(x̃) =
m∑
l=0

(xi+1 − xi)−lδli0α
(m,l)
0 (x̃) (66)

βij(x̃) =

m∑
l=0

(xi+1 − xi)−l
[
δlijα

(m,l)
0 (x̃) + δl(i+1)(j−1)α

(m,l)
1 (x̃)

]
,∀1 ≤ j < q − 1 (67)

βi(q−1)(x̃) =
m∑
l=0

(xi+1 − xi)−lδl(i+1)(q−1)α
(m,l)
1 (x̃) (68)

µi(0) = i− n, µi(1) = i− n+ 1, . . . , µi(q − 2) = i+ n, µi(q − 1) = i+ 1 + n (69)

iii. case N − n ≤ i:

βij(x̃) =
m∑
l=0

(xi+1 − xi)−l
[
δlijα

(m,l)
0 (x̃) + δl(i+1)jα

(m,l)
1 (x̃)

]
,∀0 ≤ j < q − 1 (70)

µi(j) = νi(j) (71)

After the polynomials are generated, given some random point x0 ≤ x < xN−1, do the following:

1. find the c (cell) index, such that xc ≤ x < xc+1, and compute x̃ = x−xc
xc+1−xc

2. compute the sum
q−1∑
j=0

βcj(x̃)f(µc(j)) (72)

where f is the field that is to be interpolated, known at the grid points, and imposing that βcj is 0 if

undefined.

Implementation for channel flow database For the channel flow database, the simple uniform and

periodic grid results from [71] are used for the x and z directions, and the above generalization for the y
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direction. This leads to the following tensor product spline

q−1∑
i=0

q−1∑
j=0

q−1∑
k=0

βi(x̃)βcyj(ỹ)βk(z̃)f(µ(i), µc(j), µ(k)) (73)

where βj are the uniform-periodic grid β polynomials, and likewise µ gives the compute nodes for the

uniform-periodic grid.

Derivatives can be interpolated by differentiating the β polynomials directly. This leads to interpolants

which coincide with finite difference approximations at grid nodes by construction. In practice, the different

derivatives of the β polynomials are also stored alongside the polynomials, and they are simply replaced into

(73) as needed:

dox

dxox
doy

dxoy
doz

dxoz
f(x, y, z) ≈

q−1∑
i=0

q−1∑
j=0

q−1∑
k=0

β(ox)
cx (x̃)β

(oy)
cyj

(ỹ)β(oz)
cz (z̃)f(µ(i), µc(j), µ(k)) (74)

The maximum order of differentiation is m, since continuity can only be guaranteed up to order m.

Tests based on divergence-free condition By construction, the different spline interpolations should

converge to a set limit as the smoothness m and the stencil size q grow to infinity. However, there is no

reason to believe that the limit they reach is the “exact” field, i.e. the spectral representation of the DNS.

As a limited test on the accuracy of derivatives and interpolations provided by the spline methods

described above, we evaluate relative errors in complying with the divergence-free condition. A set of points

was chosen at random in the lower half of the simulation domain (at a randomly chosen time): 212 points

distributed randomly in the xz plane for each 8th y cell. The velocity field was interpolated at these points

with different methods, and the results compared, resulting in an “error”; this error was then averaged over

the 212 points for each value of y, to obtain the dependency of the error on the y component. In this sense,

we can compare all the interpolation methods to one chosen as a reference ((m, q) = (2, 14) in our case), as

in figure 13; we can study the interpolation error for the different quantities of interest, as in figure 14; and

we can study how well interpolation methods respect certain constraints on the data, as in figure 15.
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Figure 13: Distance between various methods and the (m, q) = (2, 14) method, for the different components
of the velocity field.

Taking into account the results seen in figure 15, a convergence study was carried out. Ideally, the

divergence should approach 0 when computed for the interpolated velocity field, since the divergence-free

property was imposed in Fourier space in the original DNS. A comparison of the divergence error, as a

function of the size of the stencils used in the interpolation, was made between the channel flow data for

y = 0 and the isotropic turbulence data (described in [6, 20]), for some arbitrarily chosen fixed y value. Since
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Figure 15: Divergence of the velocity field, computed with the results of different interpolations.

the channel flow data is close to isotropic at the channel center, this should provide a meaningful comparison.

212 points were chosen with random x and z coordinates, and the divergence was computed for four

different datasets: raw channel flow data (labeled with ‘c’ in the figure), raw isotropic turbulence data

(labeled with ‘i’ in the figure), filtered channel flow data (‘fc’) and filtered isotropic turbulence data (‘fi’).

The points are identical for the raw and filtered versions of the same dataset. Filtering was performed by

convolution with the array (1/4, 1/2, 1/4) in the x and z directions, i.e. a trapezoidal rule with width twice

the grid-size was applied (no filtering on the y direction for either dataset).

It can be seen that the divergence error does not converge for the raw channel flow dataset, while it does

converge (for the range of q values we used) for the isotropic turbulence dataset. This is most likely related

to the number of grid points used for the real space grid for the two datasets. In the case of the channel

flow, the minimum number of points was chosen, so that all the Fourier modes would be represented (in the

x and z directions). Since a 2/3 truncation was used for dealiasing, this means that the space required for

the database was decreased by more than half (4/9), as opposed to the case when the real space grid used in

the original DNS would have been used. For the isotropic turbulence dataset, the full DNS real space grid

was used, even though a 2
√

2/3 truncation had also been applied.

Figure 16 seems to imply that it is this additional smoothness that allows the spline interpolations to

converge when the stencil size is increased. Interestingly, the m = 1 methods do not converge for the channel

flow even for the filtered data. However, it is quite clear that not only is the divergence error much smaller

for the filtered data, but it also converges (for m = 2 and m = 3) with increasing q.
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