Johns Hopkins Turbulence Databases


Publications and abstracts:

      ●  Yi Li, Eric Perlman, Minping Wan, Yunke Yang, Charles Meneveau, Randal Burns, Shiyi Chen, Alexander Szalay, and Gregory Eyink. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. Journal of Turbulence, 9:N31, 2008. [ DOI | arXiv ]
      ●  Huidan Yu, Kalin Kanov, Eric Perlman, Jason Graham, Edo Frederix, Randal Burns, Alexander Szalay, Gregory Eyink, and Charles Meneveau. Studying Lagrangian dynamics of turbulence using on-demand fluid particle tracking in a public turbulence database. Journal of Turbulence, 13:N12, 2012. [ DOI ]
      ●  Eric Perlman, Randal Burns, Yi Li, and Charles Meneveau. Data exploration of turbulence simulations using a database cluster. In Proceedings of the 2007 ACM/IEEE conference on Supercomputing - SC '07, page 1, New York, New York, USA, 2007. ACM Press. [ DOI ]
      ●  J. Graham, K. Kanov, X. I. A. Yang, M. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau. A Web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. Journal of Turbulence, 17(2):181-215, 2016. [ DOI ]
      ●  Xiaodan Wang, Eric Perlman, Randal Burns, Tanu Malik, Tamas Budavári, Charles Meneveau, and Alexander Szalay. JAWS: Job-Aware Workload Scheduling for the Exploration of Turbulence Simulations. In 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1-11. IEEE, 2010. [ DOI ]
      ●  Kalin Kanov, Eric Perlman, Randal Burns, Yanif Ahmad, and Alexander Szalay. I/O streaming evaluation of batch queries for data-intensive computational turbulence. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on - SC '11, page 1, New York, New York, USA, 2011. ACM Press. [ DOI ]
      ●  Kalin Kanov, Randal Burns, Greg Eyink, Charles Meneveau, and Alexander Szalay. Data-intensive spatial filtering in large numerical simulation datasets. In 2012 International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1-9. IEEE, 2012. [ DOI ]

Sample publications of Turbulence Database usage:

      ●  Beat Lthi, Markus Holzner, and Arkady Tsinober. Expanding the Q-R space to three dimensions. Journal of Fluid Mechanics, 641:497-507 (2009). [ DOI ]
      ●  Yi Li, Laurent Chevillard, Gregory Eyink, and Charles Meneveau. Matrix exponential-based closures for the turbulent subgrid-scale stress tensor. Physical Review E, 79(1):016305 (2009). [ DOI | arXiv ]
      ●  Huidan Yu and Charles Meneveau. Lagrangian refined kolmogorov similarity hypothesis for gradient time evolution and correlation in turbulent flows. Physical Review Letters, 104(8):084502 (2010). [ DOI | arXiv ]
      ●  Huidan Yu and Charles Meneveau. Scaling of conditional lagrangian time correlation functions of velocity and pressure gradient magnitudes in isotropic turbulence. Flow, Turbulence and Combustion, 85(3-4):457-472 (2010). [ DOI | arXiv ]
      ●  Wei Liu and Eraldo Ribeiro. Scale and rotation invariant detection of singular patterns in vector flow fields. In Structural, Syntactic, and Statistical Pattern Recognition, volume 6218, pages 522-531. Springer, Berlin, Heidelberg (2010). [ DOI ]
      ●  M. Holzner, M. Guala, B. Lüthi, A. Liberzon, N. Nikitin, W. Kinzelbach, and A. Tsinober. Viscous tilting and production of vorticity in homogeneous turbulence. Physics of Fluids, 22(6):1-4 (2010). [ DOI | arXiv ]
      ●  Ayse Gul Gungor and Suresh Menon. A new two-scale model for large eddy simulation of wall-bounded flows (2010). [ DOI ]
      ●  C. C. Wu and T. Chang. Rank-Ordered Multifractal Analysis (ROMA) of probability distributions in fluid turbulence. Nonlinear Processes in Geophysics, 18(2):261-268 (2011). [ DOI ]
      ●  Hao Lu. Assessment of the modulated gradient model in decaying isotropic turbulence. Theoretical and Applied Mechanics Letters, 1(4):041004 (2011). [ DOI ]
      ●  C. J. Keylock, T. E. Tokyay, and G. Constantinescu. A method for characterising the sensitivity of turbulent flow fields to the structure of inlet turbulence. Journal of Turbulence, 12:N45 (2011). [ DOI ]
      ●  F. F. Grinstein, A. A. Gowardhan, and A. J. Wachtor. Simulations of Richtmyer-Meshkov instabilities in planar shock-tube experiments. Physics of Fluids, 23(3):034106 (2011). [ DOI ]
      ●  Gregory L. Eyink. Stochastic flux freezing and magnetic dynamo. Physical Review E, 83(5):056405 (2011). [ DOI ]
      ●  Marc Treib, Kai Burger, Florian Reichl, Charles Meneveau, Alex Szalay, and Rudiger Westermann. Turbulence visualization at the terascale on desktop PCs. IEEE Transactions on Visualization and Computer Graphics, 18(12):2169-2177 (2012). [ DOI ]
      ●  Wei Liu and Eraldo Ribeiro. Detecting singular patterns in 2D vector fields using weighted Laurent polynomial. Pattern Recognition, 45(11):3912-3925 (2012). [ DOI ]
      ●  C. J. Keylock, K. Nishimura, and J. Peinke. A classification scheme for turbulence based on the velocity-intermittency structure with an application to near-wall flow and with implications for bed load transport. Journal of Geophysical Research: Earth Surface, 117(1):n/a-n/a (2012). [ DOI ]
      ●  F F Grinstein, A A Gowardhan, J R Ristorcelli, and A J Wachtor. On coarse-grained simulations of turbulent material mixing. Physica Scripta, 86(5):058203 (2012). [ DOI ]
      ●  Nicolas A. Buchmann, Christian E. Willert, and Julio Soria. Pulsed, high-power LED illumination for tomographic particle image velocimetry. Experiments in Fluids, 53(5):1545-1560 (2012). [ DOI ]
      ●  Duo Xu and Jun Chen. Accurate estimate of turbulent dissipation rate using PIV data. Experimental Thermal and Fluid Science, 44:662-672 (2013). [ DOI ]
      ●  L. Moriconi and R. M. Pereira. Vorticity statistics and the time scales of turbulent strain. Physical Review E, 88(1):013005 (2013). [ DOI | arXiv ]
      ●  Xiaofeng Liu and Joseph Katz. Vortex-corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field. Journal of Fluid Mechanics, 728:417-457 (2013). [ DOI ]
      ●  Gregory Eyink, Ethan Vishniac, Cristian Lalescu, Hussein Aluie, Kalin Kanov, Kai Bürger, Randal Burns, Charles Meneveau, and Alexander Szalay. Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence. Nature, 497(7450):466-469 (2013). [ DOI ]
      ●  Gregory L. Eyink and Damien Benveniste. Diffusion approximation in turbulent two-particle dispersion. Physical Review E, 88(4):041001 (2013). [ DOI | arXiv ]
      ●  J. A.I. Cardesa, D Mistry, L. Gan, and J. A.R. Dawson. Invariants of the reduced velocity gradient tensor in turbulent flows. Journal of Fluid Mechanics, 716:597-615 (2013). [ DOI ]
      ●  Pallavi Bhat and Kandaswamy Subramanian. Fluctuation dynamos and their Faraday rotation signatures. Monthly Notices of the Royal Astronomical Society, 429(3):2469-2481 (2013). [ DOI ]
      ●  Haitao Xu, Alain Pumir, Gregory Falkovich, Eberhard Bodenschatz, Michael Shats, Hua Xia, Nicolas Francois, and Guido Boffetta. Flight-crash events in turbulence. Proceedings of the National Academy of Sciences, 111(21):7558-7563 (2014). [ DOI ]
      ●  Alain Pumir, Haitao Xu, Guido Boffetta, Gregory Falkovich, and Eberhard Bodenschatz. Redistribution of kinetic energy in turbulent flows. Physical Review X, 4(4):041006 (2014). [ DOI ]
      ●  M. Mishra, X. Liu, M. Skote, and C. W. Fu. Kolmogorov spectrum consistent optimization for multi-scale flow decomposition. Physics of Fluids, 26(5):055106 (2014). [ DOI ]
      ●  Jennifer Jucha, Haitao Xu, Alain Pumir, and Eberhard Bodenschatz. Time-reversal-symmetry breaking in turbulence. Physical Review Letters, 113(5):054501 (2014). [ DOI | arXiv ]
      ●  K. Gustavsson, J. Einarsson, and B. Mehlig. Tumbling of small axisymmetric particles in random and turbulent flows. Physical Review Letters, 112(1):014501 (2014). [ DOI | arXiv ]
      ●  D. Fiscaletti, J. Westerweel, and G. E. Elsinga. Long-range μPIV to resolve the small scales in a jet at high Reynolds number. Experiments in Fluids, 55(9):1-15 (2014). [ DOI ]
      ●  Damien Benveniste and Theodore D. Drivas. Asymptotic results for backwards two-particle dispersion in a turbulent flow. Physical Review E, 89(4):041003 (2014). [ DOI | arXiv ]
      ●  J. M. Lawson and J. R. Dawson. On velocity gradient dynamics and turbulent structure. Journal of Fluid Mechanics, 780:60-98 (2015). [ DOI ]
      ●  Cristian C. Lalescu, Yi Kang Shi, Gregory L. Eyink, Theodore D. Drivas, Ethan T. Vishniac, and Alexander Lazarian. Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind. Physical Review Letters, 115(2):025001 (2015). [ DOI | arXiv ]
      ●  Perry L. Johnson and Charles Meneveau. Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence. Physics of Fluids, 27(8):085110 (2015). [ DOI ]
      ●  L. Fang, W. J.T. Bos, and G. D. Jin. Short-time evolution of Lagrangian velocity gradient correlations in isotropic turbulence. Physics of Fluids, 27(12):125102 (2015). [ DOI | arXiv ]
      ●  Tom Chang, Cheng chin Wu, Marius Echim, Hervé Lamy, Mark Vogelsberger, Lars Hernquist, and Debora Sijacki. Complexity Phenomena and ROMA of the Earth's Magnetospheric Cusp, Hydrodynamic Turbulence, and the Cosmic Web. Pure and Applied Geophysics, 172(7):2025-2043 (2015). [ DOI ]
      ●  M. Byron, J. Einarsson, K. Gustavsson, G. Voth, B. Mehlig, and E. Variano. Shape-dependence of particle rotation in isotropic turbulence. Physics of Fluids, 27(3):035101 (2015). [ DOI | arXiv ]
      ●  Zhongyi Wang, Qi Gao, Chengyue Wang, Runjie Wei, and Jinjun Wang. An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction. Experiments in Fluids, 57(6):104 (2016). [ DOI ]
      ●  Stefania Scarsoglio, Giovanni Iacobello, and Luca Ridolfi. Complex Networks Unveiling Spatial Patterns in Turbulence. International Journal of Bifurcation and Chaos, 26(13):1650223 (2016). [ DOI | arXiv ]
      ●  Alain Pumir, Haitao Xu, and Eric D. Siggia. Small-scale anisotropy in turbulent boundary layers. Journal of Fluid Mechanics, 804:5-23 (2016). [ DOI ]
      ●  Alain Pumir, Haitao Xu, Eberhard Bodenschatz, and Rainer Grauer. Single-Particle Motion and Vortex Stretching in Three-Dimensional Turbulent Flows. Physical Review Letters, 116(12):124502 (2016). [ DOI ]
      ●  A. Lozano-Durán, M. Holzner, and J. Jiménez. Multiscale analysis of the topological invariants in the logarithmic region of turbulent channels at a friction Reynolds number of 932. Journal of Fluid Mechanics, 803:356-394 (2016). [ DOI | arXiv ]
      ●  A. Laskari, R. de Kat, and B. Ganapathisubramani. Full-field pressure from snapshot and time-resolved volumetric PIV. Experiments in Fluids, 57(3):1-14 (2016). [ DOI ]
      ●  Perry L. Johnson and Charles Meneveau. A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields. Journal of Fluid Mechanics, 804:387-419 (2016). [ DOI | arXiv ]
      ●  Perry L. Johnson and Charles Meneveau. Large-deviation statistics of vorticity stretching in isotropic turbulence. Physical Review E, 93(3):033118 (2016). [ DOI ]
      ●  J E Higham, W Brevis, and C J Keylock. A rapid non-iterative proper orthogonal decomposition based outlier detection and correction for PIV data. Measurement Science and Technology, 27(12):125303 (2016). [ DOI ]
      ●  G. E. Elsinga and I. Marusic. The anisotropic structure of turbulence and its energy spectrum. Physics of Fluids, 28(1):011701 (2016). [ DOI ]
      ●  J. B. Chapelier, G. Lodato, and A. Jameson. A study on the numerical dissipation of the Spectral Difference method for freely decaying and wall-bounded turbulence. Computers and Fluids, 139:261-280 (2016). [ DOI ]
      ●  F. Candelier, J. Einarsson, and B. Mehlig. Angular dynamics of a small particle in turbulence. Physical Review Letters, 117(20):204501 (2016). [ DOI | arXiv ]
      ●  Cao Zhang, Jin Wang, William Blake, and Joseph Katz. Deformation of a compliant wall in a turbulent channel flow. Journal of Fluid Mechanics, 823:345-390 (2017). [ DOI ]
      ●  Cheng Yue Wang, Qi Gao, Run Jie Wei, Tian Li, and Jin Jun Wang. Weighted divergence correction scheme and its fast implementation. Experiments in Fluids, 58(5):44 (2017). [ DOI ]
      ●  R. Tunstall, D. Laurence, R. Prosser, and A. Skillen. Towards a generalised dual-mesh hybrid LES/RANS framework with improved consistency. Computers and Fluids, 157:73-83 (2017). [ DOI ]
      ●  Lukas Schmidt, Itzhak Fouxon, Peter Ditlevsen, and Markus Holzner. Inhomogeneous preferential concentration of inertial particles in turbulent channel flow. (2017). [ arXiv ]
      ●  Cosmin Safta, Myra Blaylock, Jeremy Templeton, Stefan Domino, Khachik Sargsyan, and Habib Najm. Uncertainty quantification in LES of channel flow. International Journal for Numerical Methods in Fluids, 83(4):376-401 (2017). [ DOI ]
      ●  P. Rao, C. P. Caulfield, and J. D. Gibbon. Nonlinear effects in buoyancy-driven variable-density turbulence. Journal of Fluid Mechanics, 810:362-377 (2017). [ DOI ]
      ●  Alain Pumir. Structure of the velocity gradient tensor in turbulent shear flows. Physical Review Fluids, 2(7):074602 (2017). [ DOI | arXiv ]
      ●  M. A. Mendez, M. Raiola, A. Masullo, S. Discetti, A. Ianiro, R. Theunissen, and J. M. Buchlin. POD-based background removal for particle image velocimetry. Experimental Thermal and Fluid Science, 80:181-192 (2017). [ DOI ]
      ●  Huan Lian, Nikolaos Soulopoulos, and Yannis Hardalupas. Evaluation of the topological characteristics of the turbulent flow in a ‘box of turbulence' through 2D time-resolved particle image velocimetry. Experiments in Fluids, 58(9):118 (2017). [ DOI ]
      ●  Nick Leaf, Bob Miller, and Kwan-Liu Ma. In situ video encoding of floating-point volume data using special-purpose hardware for a posteriori rendering and analysis. In 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV), pages 64-73. IEEE (2017). [ DOI ]
      ●  Katrin Lasinger, Christoph Vogel, and Konrad Schindler. Volumetric Flow Estimation for Incompressible Fluids Using the Stationary Stokes Equations. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 2584-2592. IEEE (2017). [ DOI ]
      ●  Christopher J. Keylock. Synthetic velocity gradient tensors and the identification of statistically significant aspects of the structure of turbulence. Physical Review Fluids, 2(8):084607 (2017). [ DOI ]
      ●  Perry L. Johnson, Stephen S. Hamilton, Randal Burns, and Charles Meneveau. Analysis of geometrical and statistical features of Lagrangian stretching in turbulent channel flow using a database task-parallel particle tracking algorithm. Physical Review Fluids, 2(1):014605 (2017). [ DOI ]
      ●  Theodore D. Drivas and Gregory L. Eyink. A Lagrangian fluctuation – dissipation relation for scalar turbulence . Part II . Wall-bounded flows. Journal of Fluid Mechanics, 829:236-279 (2017). [ DOI ]
      ●  Léonie Canet, Vincent Rossetto, Nicolás Wschebor, and Guillaume Balarac. Spatiotemporal velocity-velocity correlation function in fully developed turbulence. Physical Review E, 95(2):023107 (2017). [ DOI | arXiv ]
      ●  Wentao Wang, Wenke Wang, and Sikun Li. Detection and classification of critical points in piecewise linear vector fields. Journal of Visualization, 21(1):147-161 (2018). [ DOI ]
      ●  Hong Ping Wang, Shi Zhao Wang, and Guo Wei He. The spanwise spectra in wall-bounded turbulence. Acta Mechanica Sinica/Lixue Xuebao, 34(3):452-461 (2018). [ DOI ]
      ●  J. Antoon van Hooft, Stéphane Popinet, Chiel C. van Heerwaarden, Steven J.A. van der Linden, Stephan R. de Roode, and Bas J.H. van de Wiel. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations. Boundary-Layer Meteorology, 167(3):421-443 (2018). [ DOI ]
      ●  Ron Shnapp and Alex Liberzon. Generalization of Turbulent Pair Dispersion to Large Initial Separations. Physical Review Letters, 120(24):244502 (2018). [ DOI ]
      ●  R. Ranjan and S. Menon. Vorticity, backscatter and counter-gradient transport predictions using two-level simulation of turbulent flows. Journal of Turbulence, 19(4):334-364 (2018). [ DOI ]
      ●  Anas Obeidat and Stéphane P.A. Bordas. Three-dimensional remeshed smoothed particle hydrodynamics for the simulation of isotropic turbulence. International Journal for Numerical Methods in Fluids, 86(1):1-19 (2018). [ DOI ]
      ●  Feng Li and Fengguang Song. Building a scientific workflow framework to enable real-time machine learning and visualization. Concurrency and Computation: Practice and Experience, page e4703 (2018). [ DOI ]
      ●  Katrin Lasinger, Christoph Vogel, Thomas Pock, and Konrad Schindler. Variational 3D-PIV with sparse descriptors. Measurement Science and Technology, 29(6):064010 (2018). [ DOI | arXiv ]
      ●  Katrin Lasinger, Christoph Vogel, Thomas Pock, and Konrad Schindler. 3D Fluid Flow Estimation with Integrated Particle Reconstruction. (2018). [ arXiv ]
      ●  A. V. Kopyev. Degeneracy of velocity strain-rate tensor statistics in random isotropic incompressible flows. Physical Review Fluids, 3(2):024603 (2018). [ DOI ]
      ●  Christopher J. Keylock. The Schur decomposition of the velocity gradient tensor for turbulent flows. Journal of Fluid Mechanics, 848:876-905 (2018). [ DOI ]
      ●  Mathias Kanzler, Marc Rautenhaus, and Ruediger Westermann. A Voxel-based Rendering Pipeline for Large 3D Line Sets. In IEEE Transactions on Visualization and Computer Graphics, pages 1-1 (2018). [ DOI | arXiv ]
      ●  Perry L. Johnson and Charles Meneveau. Predicting viscous-range velocity gradient dynamics in large-eddy simulations of turbulence. Journal of Fluid Mechanics, 837:80-114 (2018). [ DOI ]
      ●  Simon J. Illingworth, Jason P. Monty, and Ivan Marusic. Estimating large-scale structures in wall turbulence using linear models. Journal of Fluid Mechanics, 842:146-162 (2018). [ DOI ]
      ●  Giovanni Iacobello, Stefania Scarsoglio, and Luca Ridolfi. Visibility graph analysis of wall turbulence time-series. Physics Letters A, 382(1):1-11 (2018). [ DOI ]
      ●  Itzhak Fouxon, Lukas Schmidt, Peter Ditlevsen, Maarten Van Reeuwijk, and Markus Holzner. Inhomogeneous growth of fluctuations of concentration of inertial particles in channel turbulence. Physical Review Fluids, 3(6):064301 (2018). [ DOI ]
      ●  José Hugo Elsas, Alexander S. Szalay, and Charles Meneveau. Geometry and scaling laws of excursion and iso-sets of enstrophy and dissipation in isotropic turbulence. Journal of Turbulence, 19(4):297-321 (2018). [ DOI | arXiv ]
      ●  Stefano Discetti, Marco Raiola, and Andrea Ianiro. Estimation of time-resolved turbulent fields through correlation of non-time-resolved field measurements and time-resolved point measurements. Experimental Thermal and Fluid Science, 93:119-130 (2018). [ DOI ]
      ●  Paul Debue, Denis Kuzzay, Ewe Wei Saw, François Daviaud, Bérengère Dubrulle, Léonie Canet, Vincent Rossetto, and Nicolás Wschebor. Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow. Physical Review Fluids, 3(2):024602 (2018). [ DOI ]
      ●  Paul Debue, Denis Kuzzay, Ewe Wei Saw, François Daviaud, Bérengère Dubrulle, Léonie Canet, Vincent Rossetto, and Nicolás Wschebor. Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow. Physical Review Fluids, 3(2):024602 (2018). [ DOI ]
      ●  Mohammad Danish and Charles Meneveau. Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence. Physical Review Fluids, 3(4):044604 (2018). [ DOI ]
      ●  Peter S. Bernard and Martin A. Erinin. Fluid particle dynamics and the non-local origin of the Reynolds shear stress. Journal of Fluid Mechanics, 847:520-551 (2018). [ DOI ]
      ●  Joseph G. Ballouz and Nicholas T. Ouellette. Tensor geometry in the turbulent cascade. Journal of Fluid Mechanics, 835:1048-1064 (2018). [ DOI ]
      ●  Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. TTHRESH: Tensor Compression for Multidimensional Visual Data. (2018). [ arXiv ]
      ●  Luigi A. Antonialli, Aristeu Silveira-neto, Faculdade De Engenharia Mecânica, Universidade Federal De Uberlândia, and Minas Gerais. Theoretical Study of Fully Developed Turbulent Flow in a Channel, Using Prandtl's Mixing Length Model. Journal of Applied Mathematics and Physics, 06(04):677-692 (2018). [ DOI ]
Disclaimer: While many efforts have been made to ensure that these data are accurate and reliable within the limits of the current state of the art, neither JHU nor any other party involved in creating, producing or delivering the website shall be liable for any damages arising out of users' access to, or use of, the website or web services. Users use the website and web services at their own risk. JHU does not warrant that the functional aspects of the website will be uninterrupted or error free, and may make changes to the site without notice.

Last update: 7/4/2018 8:32:59 PM